Cargando…

Zanubrutinib Ameliorates Cardiac Fibrosis and Inflammation Induced by Chronic Sympathetic Activation

(1) Background: Heart failure (HF) is the final stage of multiple cardiac diseases, which have now become a severe public health problem worldwide. β-Adrenergic receptor (β-AR) overactivation is a major pathological factor associated with multiple cardiac diseases and mediates cardiac fibrosis and i...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wenqi, Zhu, Shuwen, Liu, Jing, Liu, Zhigang, Zhou, Honggang, Zhang, Qianyi, Yang, Yue, Chen, Li, Guo, Xiaowei, Zhang, Tiantian, Meng, Lingxin, Chai, Dan, Tang, Guodong, Li, Xiaohe, Yang, Cheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458081/
https://www.ncbi.nlm.nih.gov/pubmed/37630287
http://dx.doi.org/10.3390/molecules28166035
Descripción
Sumario:(1) Background: Heart failure (HF) is the final stage of multiple cardiac diseases, which have now become a severe public health problem worldwide. β-Adrenergic receptor (β-AR) overactivation is a major pathological factor associated with multiple cardiac diseases and mediates cardiac fibrosis and inflammation. Previous research has demonstrated that Bruton’s tyrosine kinase (BTK) mediated cardiac fibrosis by TGF-β related signal pathways, indicating that BTK was a potential drug target for cardiac fibrosis. Zanubrutinib, a second-generation BTK inhibitor, has shown anti-fibrosis effects in previous research. However, it is unclear whether Zanubrutinib can alleviate cardiac fibrosis induced by β-AR overactivation; (2) Methods: In vivo: Male C57BL/6J mice were treated with or without the β-AR agonist isoproterenol (ISO) to establish a cardiac fibrosis animal model; (3) Results: In vivo: Results showed that the BTK inhibitor Zanubrutinib (ZB) had a great effect on cardiac fibrosis and inflammation induced by β-AR. In vitro: Results showed that ZB alleviated β-AR-induced cardiac fibroblast activation and macrophage pro-inflammatory cytokine production. Further mechanism studies demonstrated that ZB inhibited β-AR-induced cardiac fibrosis and inflammation by the BTK, STAT3, NF-κB, and PI3K/Akt signal pathways both in vivo and in vitro; (4) Conclusions: our research provides evidence that ZB ameliorates β-AR-induced cardiac fibrosis and inflammation.