Cargando…

A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis

Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Bolat, Faik, Ghitman, Jana, Necolau, Madalina Ioana, Vasile, Eugeniu, Iovu, Horia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458172/
https://www.ncbi.nlm.nih.gov/pubmed/37631504
http://dx.doi.org/10.3390/polym15163446
Descripción
Sumario:Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H(2)SO(4) and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H(2)O(2). In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples’ crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples.