Cargando…
Machine Learning and Quantum Calculation for Predicting Yield in Cu-Catalyzed P–H Reactions
The paper discussed the use of machine learning (ML) and quantum chemistry calculations to predict the transition state and yield of copper-catalyzed P–H insertion reactions. By analyzing a dataset of 120 experimental data points, the transition state was determined using density functional theory (...
Autores principales: | Ma, Youfu, Zhang, Xianwei, Zhu, Lin, Feng, Xiaowei, Kowah, Jamal A. H., Jiang, Jun, Wang, Lisheng, Jiang, Lihe, Liu, Xu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458182/ https://www.ncbi.nlm.nih.gov/pubmed/37630247 http://dx.doi.org/10.3390/molecules28165995 |
Ejemplares similares
-
Quantum Monte Carlo Calculations on a Benchmark Molecule–Metal
Surface Reaction: H(2) + Cu(111)
por: Doblhoff-Dier, Katharina, et al.
Publicado: (2017) -
What the Heck?—Automated
Regioselectivity Calculations
of Palladium-Catalyzed Heck Reactions Using Quantum Chemistry
por: Ree, Nicolai, et al.
Publicado: (2022) -
Quantum machine learning for electronic structure calculations
por: Xia, Rongxin, et al.
Publicado: (2018) -
A DFT calculation-inspired Rh(i)-catalyzed reaction via suppression of α-H shift in α-alkyldiazoacetates
por: Liu, Shunying, et al.
Publicado: (2017) -
Benzotriazole as an Efficient Ligand in Cu-Catalyzed
Glaser Reaction
por: Singh, Mala, et al.
Publicado: (2019)