Cargando…
Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health
The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458190/ https://www.ncbi.nlm.nih.gov/pubmed/37630594 http://dx.doi.org/10.3390/microorganisms11082034 |
_version_ | 1785097107996147712 |
---|---|
author | Gojkovic, Zivan Simansky, Samuel Sanabria, Alain Márová, Ivana Garbayo, Inés Vílchez, Carlos |
author_facet | Gojkovic, Zivan Simansky, Samuel Sanabria, Alain Márová, Ivana Garbayo, Inés Vílchez, Carlos |
author_sort | Gojkovic, Zivan |
collection | PubMed |
description | The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios. |
format | Online Article Text |
id | pubmed-10458190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104581902023-08-27 Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health Gojkovic, Zivan Simansky, Samuel Sanabria, Alain Márová, Ivana Garbayo, Inés Vílchez, Carlos Microorganisms Review The biogeochemical cycling of mercury in aquatic environments is a complex process driven by various factors, such as ambient temperature, seasonal variations, methylating bacteria activity, dissolved oxygen levels, and Hg interaction with dissolved organic matter (DOM). As a consequence, part of the Hg contamination from anthropogenic activity that was buried in sediments is reinserted into water columns mainly in highly toxic organic Hg forms (methylmercury, dimethylmercury, etc.). This is especially prominent in the coastal shallow waters of industrial regions worldwide. The main entrance point of these highly toxic Hg forms in the aquatic food web is the naturally occurring phytoplankton. Hg availability, intake, effect on population size, cell toxicity, eventual biotransformation, and intracellular stability in phytoplankton are of the greatest importance for human health, having in mind that such Hg incorporated inside the phytoplankton cells due to biomagnification effects eventually ends up in aquatic wildlife, fish, seafood, and in the human diet. This review summarizes recent findings on the topic of organic Hg form interaction with natural phytoplankton and offers new insight into the matter with possible directions of future research for the prevention of Hg biomagnification in the scope of climate change and global pollution increase scenarios. MDPI 2023-08-08 /pmc/articles/PMC10458190/ /pubmed/37630594 http://dx.doi.org/10.3390/microorganisms11082034 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Gojkovic, Zivan Simansky, Samuel Sanabria, Alain Márová, Ivana Garbayo, Inés Vílchez, Carlos Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title | Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title_full | Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title_fullStr | Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title_full_unstemmed | Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title_short | Interaction of Naturally Occurring Phytoplankton with the Biogeochemical Cycling of Mercury in Aquatic Environments and Its Effects on Global Hg Pollution and Public Health |
title_sort | interaction of naturally occurring phytoplankton with the biogeochemical cycling of mercury in aquatic environments and its effects on global hg pollution and public health |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458190/ https://www.ncbi.nlm.nih.gov/pubmed/37630594 http://dx.doi.org/10.3390/microorganisms11082034 |
work_keys_str_mv | AT gojkoviczivan interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth AT simanskysamuel interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth AT sanabriaalain interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth AT marovaivana interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth AT garbayoines interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth AT vilchezcarlos interactionofnaturallyoccurringphytoplanktonwiththebiogeochemicalcyclingofmercuryinaquaticenvironmentsanditseffectsonglobalhgpollutionandpublichealth |