Cargando…
Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm
Tumorous cancer has been a widely known and well-studied medical phenomenon; however, rare diseases like Myeloproliferative Neoplasm (MPN) have received less attention, leading to delayed diagnosis. Despite the availability of advanced technology in diagnostic tools that can boost the procedure, the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458278/ https://www.ncbi.nlm.nih.gov/pubmed/37636134 http://dx.doi.org/10.1016/j.dib.2023.109484 |
_version_ | 1785097129019047936 |
---|---|
author | Mohamad Yusof, Umi Kalsom Mashohor, Syamsiah Hanafi, Marsyita Md Noor, Sabariah Zainal, Norsafina |
author_facet | Mohamad Yusof, Umi Kalsom Mashohor, Syamsiah Hanafi, Marsyita Md Noor, Sabariah Zainal, Norsafina |
author_sort | Mohamad Yusof, Umi Kalsom |
collection | PubMed |
description | Tumorous cancer has been a widely known and well-studied medical phenomenon; however, rare diseases like Myeloproliferative Neoplasm (MPN) have received less attention, leading to delayed diagnosis. Despite the availability of advanced technology in diagnostic tools that can boost the procedure, the morphological assessment of bone marrow trephine (BMT) images remains critical to confirm and differentiate MPN subtypes. This paper reports a histopathological imagery dataset that was created to focus on the most common MPN from the Philadelphia Chromosome (Ph)-negative type, namely Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (MF). The dataset consisted of 300 BMT images that can be used to enable computer vision applications, such as image segmentation, disease classification, and object recognition, in assisting the classification of the MPN disease. Ethical approval was obtained from the Ministry of Health, Malaysia and the bone marrow trephine images were captured using a digital microscope from the Olympus model (BX41 Dual head microscope) with x10, x20, and x40 lens types. The development of comprehensive tools deployed from this dataset can assist medical practitioners in diagnosing diseases, thus overcoming the current challenges. |
format | Online Article Text |
id | pubmed-10458278 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104582782023-08-27 Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm Mohamad Yusof, Umi Kalsom Mashohor, Syamsiah Hanafi, Marsyita Md Noor, Sabariah Zainal, Norsafina Data Brief Data Article Tumorous cancer has been a widely known and well-studied medical phenomenon; however, rare diseases like Myeloproliferative Neoplasm (MPN) have received less attention, leading to delayed diagnosis. Despite the availability of advanced technology in diagnostic tools that can boost the procedure, the morphological assessment of bone marrow trephine (BMT) images remains critical to confirm and differentiate MPN subtypes. This paper reports a histopathological imagery dataset that was created to focus on the most common MPN from the Philadelphia Chromosome (Ph)-negative type, namely Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (MF). The dataset consisted of 300 BMT images that can be used to enable computer vision applications, such as image segmentation, disease classification, and object recognition, in assisting the classification of the MPN disease. Ethical approval was obtained from the Ministry of Health, Malaysia and the bone marrow trephine images were captured using a digital microscope from the Olympus model (BX41 Dual head microscope) with x10, x20, and x40 lens types. The development of comprehensive tools deployed from this dataset can assist medical practitioners in diagnosing diseases, thus overcoming the current challenges. Elsevier 2023-08-11 /pmc/articles/PMC10458278/ /pubmed/37636134 http://dx.doi.org/10.1016/j.dib.2023.109484 Text en © 2023 The Authors. Published by Elsevier Inc. https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Data Article Mohamad Yusof, Umi Kalsom Mashohor, Syamsiah Hanafi, Marsyita Md Noor, Sabariah Zainal, Norsafina Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title | Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title_full | Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title_fullStr | Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title_full_unstemmed | Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title_short | Histopathology imagery dataset of Ph-negative myeloproliferative neoplasm |
title_sort | histopathology imagery dataset of ph-negative myeloproliferative neoplasm |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458278/ https://www.ncbi.nlm.nih.gov/pubmed/37636134 http://dx.doi.org/10.1016/j.dib.2023.109484 |
work_keys_str_mv | AT mohamadyusofumikalsom histopathologyimagerydatasetofphnegativemyeloproliferativeneoplasm AT mashohorsyamsiah histopathologyimagerydatasetofphnegativemyeloproliferativeneoplasm AT hanafimarsyita histopathologyimagerydatasetofphnegativemyeloproliferativeneoplasm AT mdnoorsabariah histopathologyimagerydatasetofphnegativemyeloproliferativeneoplasm AT zainalnorsafina histopathologyimagerydatasetofphnegativemyeloproliferativeneoplasm |