Cargando…
A Modified Aquila-Based Optimized XGBoost Framework for Detecting Probable Seizure Status in Neonates
Electroencephalography (EEG) is increasingly being used in pediatric neurology and provides opportunities to diagnose various brain illnesses more accurately and precisely. It is thought to be one of the most effective tools for identifying newborn seizures, especially in Neonatal Intensive Care Uni...
Autores principales: | Mumenin, Khondoker Mirazul, Biswas, Prapti, Khan, Md. Al-Masrur, Alammary, Ali Saleh, Nahid, Abdullah-Al |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458382/ https://www.ncbi.nlm.nih.gov/pubmed/37631573 http://dx.doi.org/10.3390/s23167037 |
Ejemplares similares
-
Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
por: Raihan, Md. Johir, et al.
Publicado: (2023) -
An Improved Machine-Learning Approach for COVID-19 Prediction Using Harris Hawks Optimization and Feature Analysis Using SHAP
por: Debjit, Kumar, et al.
Publicado: (2022) -
A Comprehensive Survey on Aquila Optimizer
por: Sasmal, Buddhadev, et al.
Publicado: (2023) -
XGBoost-Based Framework for Smoking-Induced Noncommunicable Disease Prediction
por: Davagdorj, Khishigsuren, et al.
Publicado: (2020) -
XGBoost-SHAP-based interpretable diagnostic framework for alzheimer’s disease
por: Yi, Fuliang, et al.
Publicado: (2023)