Cargando…
A Bio-Inspired Chaos Sensor Model Based on the Perceptron Neural Network: Machine Learning Concept and Application for Computational Neuro-Science
The study presents a bio-inspired chaos sensor model based on the perceptron neural network for the estimation of entropy of spike train in neurodynamic systems. After training, the sensor on perceptron, having 50 neurons in the hidden layer and 1 neuron at the output, approximates the fuzzy entropy...
Autores principales: | Velichko, Andrei, Boriskov, Petr, Belyaev, Maksim, Putrolaynen, Vadim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458403/ https://www.ncbi.nlm.nih.gov/pubmed/37631674 http://dx.doi.org/10.3390/s23167137 |
Ejemplares similares
-
Bifurcation and Entropy Analysis of a Chaotic Spike Oscillator Circuit Based on the S-Switch
por: Boriskov, Petr, et al.
Publicado: (2022) -
Machine Learning Sensors for Diagnosis of COVID-19 Disease Using Routine Blood Values for Internet of Things Application
por: Velichko, Andrei, et al.
Publicado: (2022) -
Entropy-Based Machine Learning Model for Fast Diagnosis and Monitoring of Parkinson’s Disease
por: Belyaev, Maksim, et al.
Publicado: (2023) -
Multilayer perceptrons
por: Vang-Mata, Ruth
Publicado: (2020) -
On the Perceptron’s Compression
por: Moran, Shay, et al.
Publicado: (2020)