Cargando…

The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae

Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as...

Descripción completa

Detalles Bibliográficos
Autores principales: Zinicovscaia, Inga, Yushin, Nikita, Grozdov, Dmitrii, Peshkova, Alexandra, Vergel, Konstantin, Rodlovskaya, Elena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458459/
https://www.ncbi.nlm.nih.gov/pubmed/37630569
http://dx.doi.org/10.3390/microorganisms11082009
_version_ 1785097170677923840
author Zinicovscaia, Inga
Yushin, Nikita
Grozdov, Dmitrii
Peshkova, Alexandra
Vergel, Konstantin
Rodlovskaya, Elena
author_facet Zinicovscaia, Inga
Yushin, Nikita
Grozdov, Dmitrii
Peshkova, Alexandra
Vergel, Konstantin
Rodlovskaya, Elena
author_sort Zinicovscaia, Inga
collection PubMed
description Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater.
format Online
Article
Text
id pubmed-10458459
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104584592023-08-27 The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae Zinicovscaia, Inga Yushin, Nikita Grozdov, Dmitrii Peshkova, Alexandra Vergel, Konstantin Rodlovskaya, Elena Microorganisms Article Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater. MDPI 2023-08-04 /pmc/articles/PMC10458459/ /pubmed/37630569 http://dx.doi.org/10.3390/microorganisms11082009 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zinicovscaia, Inga
Yushin, Nikita
Grozdov, Dmitrii
Peshkova, Alexandra
Vergel, Konstantin
Rodlovskaya, Elena
The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title_full The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title_fullStr The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title_full_unstemmed The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title_short The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
title_sort remediation of dysprosium-containing effluents using cyanobacteria spirulina platensis and yeast saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458459/
https://www.ncbi.nlm.nih.gov/pubmed/37630569
http://dx.doi.org/10.3390/microorganisms11082009
work_keys_str_mv AT zinicovscaiainga theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT yushinnikita theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT grozdovdmitrii theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT peshkovaalexandra theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT vergelkonstantin theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT rodlovskayaelena theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT zinicovscaiainga remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT yushinnikita remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT grozdovdmitrii remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT peshkovaalexandra remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT vergelkonstantin remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae
AT rodlovskayaelena remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae