Cargando…
The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae
Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458459/ https://www.ncbi.nlm.nih.gov/pubmed/37630569 http://dx.doi.org/10.3390/microorganisms11082009 |
_version_ | 1785097170677923840 |
---|---|
author | Zinicovscaia, Inga Yushin, Nikita Grozdov, Dmitrii Peshkova, Alexandra Vergel, Konstantin Rodlovskaya, Elena |
author_facet | Zinicovscaia, Inga Yushin, Nikita Grozdov, Dmitrii Peshkova, Alexandra Vergel, Konstantin Rodlovskaya, Elena |
author_sort | Zinicovscaia, Inga |
collection | PubMed |
description | Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater. |
format | Online Article Text |
id | pubmed-10458459 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104584592023-08-27 The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae Zinicovscaia, Inga Yushin, Nikita Grozdov, Dmitrii Peshkova, Alexandra Vergel, Konstantin Rodlovskaya, Elena Microorganisms Article Dysprosium is one of the most critical rare earth elements for industry and technology. A comparative study was carried out to assess the biosorption capacity of cyanobacteria Spirulina platensis and yeast Saccharomyces cerevisiae toward dysprosium ions. The effect of experimental parameters such as pH, dysprosium concentration, time of contact, and temperature on the biosorption capacity was evaluated. Biomass before and after dysprosium biosorption was analyzed using neutron activation analysis and Fourier-transform infrared spectroscopy. For both biosorbents, the process was quick and pH-dependent. The maximum removal of dysprosium using Spirulina platensis (50%) and Saccharomyces cerevisiae (68%) was attained at pH 3.0 during a one-hour experiment. The adsorption data for both biosorbents fitted well with the Langmuir isotherm model, whereas the kinetics of the process followed the pseudo-second-order and Elovich models. The maximum biosorption capacity of Spirulina platensis was 3.24 mg/g, and that of Saccharomyces cerevisiae was 5.84 mg/g. The thermodynamic parameters showed that dysprosium biosorption was a spontaneous process, exothermic for Saccharomyces cerevisiae and endothermic for Spirulina platensis. Biological sorbents can be considered an eco-friendly alternative to traditional technologies applied for dysprosium ion recovery from wastewater. MDPI 2023-08-04 /pmc/articles/PMC10458459/ /pubmed/37630569 http://dx.doi.org/10.3390/microorganisms11082009 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zinicovscaia, Inga Yushin, Nikita Grozdov, Dmitrii Peshkova, Alexandra Vergel, Konstantin Rodlovskaya, Elena The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title | The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title_full | The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title_fullStr | The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title_full_unstemmed | The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title_short | The Remediation of Dysprosium-Containing Effluents Using Cyanobacteria Spirulina platensis and Yeast Saccharomyces cerevisiae |
title_sort | remediation of dysprosium-containing effluents using cyanobacteria spirulina platensis and yeast saccharomyces cerevisiae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458459/ https://www.ncbi.nlm.nih.gov/pubmed/37630569 http://dx.doi.org/10.3390/microorganisms11082009 |
work_keys_str_mv | AT zinicovscaiainga theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT yushinnikita theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT grozdovdmitrii theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT peshkovaalexandra theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT vergelkonstantin theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT rodlovskayaelena theremediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT zinicovscaiainga remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT yushinnikita remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT grozdovdmitrii remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT peshkovaalexandra remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT vergelkonstantin remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae AT rodlovskayaelena remediationofdysprosiumcontainingeffluentsusingcyanobacteriaspirulinaplatensisandyeastsaccharomycescerevisiae |