Cargando…
Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation
Anomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458462/ https://www.ncbi.nlm.nih.gov/pubmed/37631721 http://dx.doi.org/10.3390/s23167185 |
_version_ | 1785097171397246976 |
---|---|
author | García-Aguilar, Iván Luque-Baena, Rafael Marcos Domínguez, Enrique López-Rubio, Ezequiel |
author_facet | García-Aguilar, Iván Luque-Baena, Rafael Marcos Domínguez, Enrique López-Rubio, Ezequiel |
author_sort | García-Aguilar, Iván |
collection | PubMed |
description | Anomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect anomalous events in urban sequences using pre-trained convolutional neural networks (CNN) and super-resolution (SR) models. The proposal is composed of two parts. In the offline stage, the pre-trained CNN model evaluated a large dataset of urban sequences to detect and establish the common locations of the elements of interest. Analyzing the offline sequences, a density matrix is calculated to learn the spatial patterns and identify the most frequent locations of these elements. Based on probabilities previously calculated from the offline analysis, the pre-trained CNN, now in an online stage, assesses the probability of anomalies appearing in the real-time sequence using the density matrix. Experimental results demonstrate the effectiveness of the presented approach in detecting several anomalies, such as unusual pedestrian routes. This research contributes to urban surveillance by providing a practical and reliable method to improve public safety in urban environments. The proposed methodology can assist city management authorities in proactively detecting anomalies, thus enabling timely reaction and improving urban safety. |
format | Online Article Text |
id | pubmed-10458462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104584622023-08-27 Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation García-Aguilar, Iván Luque-Baena, Rafael Marcos Domínguez, Enrique López-Rubio, Ezequiel Sensors (Basel) Article Anomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect anomalous events in urban sequences using pre-trained convolutional neural networks (CNN) and super-resolution (SR) models. The proposal is composed of two parts. In the offline stage, the pre-trained CNN model evaluated a large dataset of urban sequences to detect and establish the common locations of the elements of interest. Analyzing the offline sequences, a density matrix is calculated to learn the spatial patterns and identify the most frequent locations of these elements. Based on probabilities previously calculated from the offline analysis, the pre-trained CNN, now in an online stage, assesses the probability of anomalies appearing in the real-time sequence using the density matrix. Experimental results demonstrate the effectiveness of the presented approach in detecting several anomalies, such as unusual pedestrian routes. This research contributes to urban surveillance by providing a practical and reliable method to improve public safety in urban environments. The proposed methodology can assist city management authorities in proactively detecting anomalies, thus enabling timely reaction and improving urban safety. MDPI 2023-08-15 /pmc/articles/PMC10458462/ /pubmed/37631721 http://dx.doi.org/10.3390/s23167185 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article García-Aguilar, Iván Luque-Baena, Rafael Marcos Domínguez, Enrique López-Rubio, Ezequiel Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title | Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title_full | Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title_fullStr | Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title_full_unstemmed | Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title_short | Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation |
title_sort | small-scale urban object anomaly detection using convolutional neural networks with probability estimation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458462/ https://www.ncbi.nlm.nih.gov/pubmed/37631721 http://dx.doi.org/10.3390/s23167185 |
work_keys_str_mv | AT garciaaguilarivan smallscaleurbanobjectanomalydetectionusingconvolutionalneuralnetworkswithprobabilityestimation AT luquebaenarafaelmarcos smallscaleurbanobjectanomalydetectionusingconvolutionalneuralnetworkswithprobabilityestimation AT dominguezenrique smallscaleurbanobjectanomalydetectionusingconvolutionalneuralnetworkswithprobabilityestimation AT lopezrubioezequiel smallscaleurbanobjectanomalydetectionusingconvolutionalneuralnetworkswithprobabilityestimation |