Cargando…
Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation
Anomaly detection in sequences is a complex problem in security and surveillance. With the exponential growth of surveillance cameras in urban roads, automating them to analyze the data and automatically identify anomalous events efficiently is essential. This paper presents a methodology to detect...
Autores principales: | García-Aguilar, Iván, Luque-Baena, Rafael Marcos, Domínguez, Enrique, López-Rubio, Ezequiel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458462/ https://www.ncbi.nlm.nih.gov/pubmed/37631721 http://dx.doi.org/10.3390/s23167185 |
Ejemplares similares
-
Object Detection and Depth Estimation Approach Based on Deep Convolutional Neural Networks †
por: Wang, Huai-Mu, et al.
Publicado: (2021) -
Convolutional Neural Networks Backbones for Object Detection
por: Benali Amjoud, Ayoub, et al.
Publicado: (2020) -
One-Class Convolutional Neural Networks for Water-Level Anomaly Detection
por: Nicholaus, Isack Thomas, et al.
Publicado: (2022) -
Detection of anomalies in cycling behavior with convolutional neural network and deep learning
por: Yaqoob, Shumayla, et al.
Publicado: (2023) -
A Convolutional Neural Network for Improved Anomaly-Based Network Intrusion Detection
por: Al-Turaiki, Isra, et al.
Publicado: (2021)