Cargando…

Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination

Compared with high-pressure water and reagent washing decontamination, foam decontamination has a promising application due to its ability to significantly reduce the volume of radioactive waste liquids and effectively decontaminate the inner surface of the pipes, the interior of the large cavities,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Hao, Liang, Lili, Xi, Hailing, Lin, Xiaoyan, Li, Zhanguo, Jiao, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458476/
https://www.ncbi.nlm.nih.gov/pubmed/37630358
http://dx.doi.org/10.3390/molecules28166107
_version_ 1785097174941433856
author Zhang, Hao
Liang, Lili
Xi, Hailing
Lin, Xiaoyan
Li, Zhanguo
Jiao, Yu
author_facet Zhang, Hao
Liang, Lili
Xi, Hailing
Lin, Xiaoyan
Li, Zhanguo
Jiao, Yu
author_sort Zhang, Hao
collection PubMed
description Compared with high-pressure water and reagent washing decontamination, foam decontamination has a promising application due to its ability to significantly reduce the volume of radioactive waste liquids and effectively decontaminate the inner surface of the pipes, the interior of the large cavities, and the vertical walls. However, the foam is less stable, leading to a low decontamination rate. Currently, three main types of stabilizers with different stabilizing mechanisms, namely nanoparticles, polymers, and cosurfactants, are used to improve foam stability and thus increase the decontamination rate. Nanosilica (NS), xanthan gum (XG), and n-tetradecanol (TD) were used as typical representatives of nanoparticles, polymers, and cosurfactants, respectively, to improve the stability of the foam detergent with pH < 2 and chelating agents. The differences in the effects of these three types of stabilizers on foam properties were investigated. Although NS, XG, and TD all increase the half-life of the foam from 7.2 min to about 40 min, the concentration of TD is much lower than that of NS and XG in the foaming solution, and TD foaming solution has the highest foaming ratio. Moreover, TD can markedly lower the surface tension, resulting in a significant reduction of the wetting contact angle on the surfaces of glass, ceramic tile, stainless steel, and paint, while NS and XG cannot signally change the surface tension and have no obvious effect on the wetting contact angle. At low shear rates, TD can increase the apparent viscosity of foam by two orders of magnitude, and the wall-hanging time of the foam on the vertical wall is more than 30 min. In contrast, NS and XG cause a limited increase in the apparent viscosity of the foam, and the wall-hanging times are both less than 5 min. In addition, TD foaming solution has excellent storage stability, and the storage time has no obvious effect on the performance of the foam. And after only three days of storage, NS undergoes severe agglomeration and precipitation in the foaming solution, resulting in a complete loss of the stabilizing effect. After 90 days of storage, the half-life of XG foam decreases by 26%. For simulated radioactive uranium contamination on both horizontal and vertical surfaces, TD can significantly improve the decontamination rate, especially for vertical surfaces, where TD can increase the single decontamination rate by more than 50%.
format Online
Article
Text
id pubmed-10458476
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104584762023-08-27 Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination Zhang, Hao Liang, Lili Xi, Hailing Lin, Xiaoyan Li, Zhanguo Jiao, Yu Molecules Article Compared with high-pressure water and reagent washing decontamination, foam decontamination has a promising application due to its ability to significantly reduce the volume of radioactive waste liquids and effectively decontaminate the inner surface of the pipes, the interior of the large cavities, and the vertical walls. However, the foam is less stable, leading to a low decontamination rate. Currently, three main types of stabilizers with different stabilizing mechanisms, namely nanoparticles, polymers, and cosurfactants, are used to improve foam stability and thus increase the decontamination rate. Nanosilica (NS), xanthan gum (XG), and n-tetradecanol (TD) were used as typical representatives of nanoparticles, polymers, and cosurfactants, respectively, to improve the stability of the foam detergent with pH < 2 and chelating agents. The differences in the effects of these three types of stabilizers on foam properties were investigated. Although NS, XG, and TD all increase the half-life of the foam from 7.2 min to about 40 min, the concentration of TD is much lower than that of NS and XG in the foaming solution, and TD foaming solution has the highest foaming ratio. Moreover, TD can markedly lower the surface tension, resulting in a significant reduction of the wetting contact angle on the surfaces of glass, ceramic tile, stainless steel, and paint, while NS and XG cannot signally change the surface tension and have no obvious effect on the wetting contact angle. At low shear rates, TD can increase the apparent viscosity of foam by two orders of magnitude, and the wall-hanging time of the foam on the vertical wall is more than 30 min. In contrast, NS and XG cause a limited increase in the apparent viscosity of the foam, and the wall-hanging times are both less than 5 min. In addition, TD foaming solution has excellent storage stability, and the storage time has no obvious effect on the performance of the foam. And after only three days of storage, NS undergoes severe agglomeration and precipitation in the foaming solution, resulting in a complete loss of the stabilizing effect. After 90 days of storage, the half-life of XG foam decreases by 26%. For simulated radioactive uranium contamination on both horizontal and vertical surfaces, TD can significantly improve the decontamination rate, especially for vertical surfaces, where TD can increase the single decontamination rate by more than 50%. MDPI 2023-08-17 /pmc/articles/PMC10458476/ /pubmed/37630358 http://dx.doi.org/10.3390/molecules28166107 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Hao
Liang, Lili
Xi, Hailing
Lin, Xiaoyan
Li, Zhanguo
Jiao, Yu
Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title_full Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title_fullStr Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title_full_unstemmed Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title_short Effects of Different Types of Stabilizers on the Properties of Foam Detergent Used for Radioactive Surface Contamination
title_sort effects of different types of stabilizers on the properties of foam detergent used for radioactive surface contamination
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458476/
https://www.ncbi.nlm.nih.gov/pubmed/37630358
http://dx.doi.org/10.3390/molecules28166107
work_keys_str_mv AT zhanghao effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination
AT lianglili effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination
AT xihailing effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination
AT linxiaoyan effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination
AT lizhanguo effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination
AT jiaoyu effectsofdifferenttypesofstabilizersonthepropertiesoffoamdetergentusedforradioactivesurfacecontamination