Cargando…
A Machine Learning Approach to Qualitatively Evaluate Different Granulation Phases by Acoustic Emissions
Wet granulation is a frequent process in the pharmaceutical industry. As a starting point for numerous dosage forms, the quality of the granulation not only affects subsequent production steps but also impacts the quality of the final product. It is thus crucial and economical to monitor this operat...
Autores principales: | Fulek, Ruwen, Ramm, Selina, Kiera, Christian, Pein-Hackelbusch, Miriam, Odefey, Ulrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458526/ https://www.ncbi.nlm.nih.gov/pubmed/37631367 http://dx.doi.org/10.3390/pharmaceutics15082153 |
Ejemplares similares
-
Compression Density as an Alternative to Identify an Optimal Moisture Content for High Shear Wet Granulation as an Initial Step for Spheronisation
por: Ramm, Selina, et al.
Publicado: (2022) -
Data for a pre-performance test of self-developed electronic tongue sensors
por: Immohr, Laura Isabell, et al.
Publicado: (2016) -
Pipeline Leakage Detection Using Acoustic Emission and Machine Learning Algorithms
por: Ullah, Niamat, et al.
Publicado: (2023) -
A Novel Machine Learning-Based Methodology for Tool Wear Prediction Using Acoustic Emission Signals
por: Ferrando Chacón, Juan Luis, et al.
Publicado: (2021) -
On the Early and Affordable Diagnosis of Joint Pathologies Using Acoustic Emissions, Deep Learning Decompositions and Prediction Machines
por: Nsugbe, Ejay, et al.
Publicado: (2023)