Cargando…
Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties
The eggshell is a biomineral consisting of CaCO(3) in the form of calcite phase and a pervading organic matrix (1–3.5 wt.%). Transforming eggshell calcite particles into calcium phosphate (apatite) micro-nanoparticles opens the door to repurposing the eggshell waste as materials with potential biome...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458568/ https://www.ncbi.nlm.nih.gov/pubmed/37630883 http://dx.doi.org/10.3390/nano13162299 |
_version_ | 1785097196946849792 |
---|---|
author | Torres-Mansilla, Adriana Álvarez-Lloret, Pedro Fernández-Penas, Raquel D’Urso, Annarita Baldión, Paula Alejandra Oltolina, Francesca Follenzi, Antonia Gómez-Morales, Jaime |
author_facet | Torres-Mansilla, Adriana Álvarez-Lloret, Pedro Fernández-Penas, Raquel D’Urso, Annarita Baldión, Paula Alejandra Oltolina, Francesca Follenzi, Antonia Gómez-Morales, Jaime |
author_sort | Torres-Mansilla, Adriana |
collection | PubMed |
description | The eggshell is a biomineral consisting of CaCO(3) in the form of calcite phase and a pervading organic matrix (1–3.5 wt.%). Transforming eggshell calcite particles into calcium phosphate (apatite) micro-nanoparticles opens the door to repurposing the eggshell waste as materials with potential biomedical applications, fulfilling the principles of the circular economy. Previous methods to obtain these particles consisted mainly of two steps, the first one involving the calcination of the eggshell. In this research, direct transformation by a one-pot hydrothermal method ranging from 100–200 °C was studied, using suspensions with a stoichiometric P/CaCO(3) ratio, K(2)HPO(4) as P reagent, and eggshells particles (Ø < 50 μm) both untreated and treated with NaClO to remove surface organic matter. In the untreated group, the complete conversion was achieved at 160 °C, and most particles displayed a hexagonal plate morphology, eventually with a central hole. In the treated group, this replacement occurred at 180 °C, yielding granular (spherulitic) apatite nanoparticles. The eggshell particles and apatite micro-nanoparticles were cytocompatible when incubated with MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells and promoted the osteogenic differentiation of m17.ASC cells. The study results are useful for designing and fabricating biocompatible microstructured materials with osteoinductive properties for applications in bone tissue engineering and dentistry. |
format | Online Article Text |
id | pubmed-10458568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104585682023-08-27 Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties Torres-Mansilla, Adriana Álvarez-Lloret, Pedro Fernández-Penas, Raquel D’Urso, Annarita Baldión, Paula Alejandra Oltolina, Francesca Follenzi, Antonia Gómez-Morales, Jaime Nanomaterials (Basel) Article The eggshell is a biomineral consisting of CaCO(3) in the form of calcite phase and a pervading organic matrix (1–3.5 wt.%). Transforming eggshell calcite particles into calcium phosphate (apatite) micro-nanoparticles opens the door to repurposing the eggshell waste as materials with potential biomedical applications, fulfilling the principles of the circular economy. Previous methods to obtain these particles consisted mainly of two steps, the first one involving the calcination of the eggshell. In this research, direct transformation by a one-pot hydrothermal method ranging from 100–200 °C was studied, using suspensions with a stoichiometric P/CaCO(3) ratio, K(2)HPO(4) as P reagent, and eggshells particles (Ø < 50 μm) both untreated and treated with NaClO to remove surface organic matter. In the untreated group, the complete conversion was achieved at 160 °C, and most particles displayed a hexagonal plate morphology, eventually with a central hole. In the treated group, this replacement occurred at 180 °C, yielding granular (spherulitic) apatite nanoparticles. The eggshell particles and apatite micro-nanoparticles were cytocompatible when incubated with MG-63 human osteosarcoma cells and m17.ASC murine mesenchymal stem cells and promoted the osteogenic differentiation of m17.ASC cells. The study results are useful for designing and fabricating biocompatible microstructured materials with osteoinductive properties for applications in bone tissue engineering and dentistry. MDPI 2023-08-10 /pmc/articles/PMC10458568/ /pubmed/37630883 http://dx.doi.org/10.3390/nano13162299 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Torres-Mansilla, Adriana Álvarez-Lloret, Pedro Fernández-Penas, Raquel D’Urso, Annarita Baldión, Paula Alejandra Oltolina, Francesca Follenzi, Antonia Gómez-Morales, Jaime Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title | Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title_full | Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title_fullStr | Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title_full_unstemmed | Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title_short | Hydrothermal Transformation of Eggshell Calcium Carbonate into Apatite Micro-Nanoparticles: Cytocompatibility and Osteoinductive Properties |
title_sort | hydrothermal transformation of eggshell calcium carbonate into apatite micro-nanoparticles: cytocompatibility and osteoinductive properties |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458568/ https://www.ncbi.nlm.nih.gov/pubmed/37630883 http://dx.doi.org/10.3390/nano13162299 |
work_keys_str_mv | AT torresmansillaadriana hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT alvarezlloretpedro hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT fernandezpenasraquel hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT dursoannarita hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT baldionpaulaalejandra hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT oltolinafrancesca hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT follenziantonia hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties AT gomezmoralesjaime hydrothermaltransformationofeggshellcalciumcarbonateintoapatitemicronanoparticlescytocompatibilityandosteoinductiveproperties |