Cargando…

Next-Generation Water Treatment: Exploring the Potential of Biopolymer-Based Nanocomposites in Adsorption and Membrane Filtration

This review article focuses on the potential of biopolymer-based nanocomposites incorporating nanoparticles, graphene oxide (GO), carbon nanotubes (CNTs), and nanoclays in adsorption and membrane filtration processes for water treatment. The aim is to explore the effectiveness of these innovative ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Kolya, Haradhan, Kang, Chun-Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458676/
https://www.ncbi.nlm.nih.gov/pubmed/37631480
http://dx.doi.org/10.3390/polym15163421
Descripción
Sumario:This review article focuses on the potential of biopolymer-based nanocomposites incorporating nanoparticles, graphene oxide (GO), carbon nanotubes (CNTs), and nanoclays in adsorption and membrane filtration processes for water treatment. The aim is to explore the effectiveness of these innovative materials in addressing water scarcity and contamination issues. The review highlights the exceptional adsorption capacities and improved membrane performance offered by chitosan, GO, and CNTs, which make them effective in removing heavy metals, organic pollutants, and emerging contaminants from water. It also emphasizes the high surface area and ion exchange capacity of nanoclays, enabling the removal of heavy metals, organic contaminants, and dyes. Integrating magnetic (Fe(2)O(4)) adsorbents and membrane filtration technologies is highlighted to enhance adsorption and separation efficiency. The limitations and challenges associated are also discussed. The review concludes by emphasizing the importance of collaboration with industry stakeholders in advancing biopolymer-based nanocomposites for sustainable and comprehensive water treatment solutions.