Cargando…
Cross-Layer Federated Learning for Lightweight IoT Intrusion Detection Systems
With the proliferation of IoT devices, ensuring the security and privacy of these devices and their associated data has become a critical challenge. In this paper, we propose a federated sampling and lightweight intrusion-detection system for IoT networks that use K-meansfor sampling network traffic...
Autores principales: | Hajj, Suzan, Azar, Joseph, Bou Abdo, Jacques, Demerjian, Jacques, Guyeux, Christophe, Makhoul, Abdallah, Ginhac, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458682/ https://www.ncbi.nlm.nih.gov/pubmed/37631575 http://dx.doi.org/10.3390/s23167038 |
Ejemplares similares
-
Efficient Hybrid Emergency Aware MAC Protocol for Wireless Body Sensor Networks
por: Bou Dargham, Nadine, et al.
Publicado: (2018) -
Realguard: A Lightweight Network Intrusion Detection System for IoT Gateways
por: Nguyen, Xuan-Ha, et al.
Publicado: (2022) -
A lightweight intrusion detection method for IoT based on deep learning and dynamic quantization
por: Wang, Zhendong, et al.
Publicado: (2023) -
FIDChain: Federated Intrusion Detection System for Blockchain-Enabled IoT Healthcare Applications
por: Ashraf, Eman, et al.
Publicado: (2022) -
IoT Intrusion Detection Taxonomy, Reference Architecture, and Analyses
por: Albulayhi, Khalid, et al.
Publicado: (2021)