Cargando…
Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities
High efficiency and safety are critical factors in ensuring the optimal performance and reliability of systems and equipment across various industries. Fault monitoring (FM) techniques play a pivotal role in this regard by continuously monitoring system performance and identifying the presence of fa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458716/ https://www.ncbi.nlm.nih.gov/pubmed/37631622 http://dx.doi.org/10.3390/s23167087 |
_version_ | 1785097232643522560 |
---|---|
author | Bofill, Jherson Abisado, Mideth Villaverde, Jocelyn Sampedro, Gabriel Avelino |
author_facet | Bofill, Jherson Abisado, Mideth Villaverde, Jocelyn Sampedro, Gabriel Avelino |
author_sort | Bofill, Jherson |
collection | PubMed |
description | High efficiency and safety are critical factors in ensuring the optimal performance and reliability of systems and equipment across various industries. Fault monitoring (FM) techniques play a pivotal role in this regard by continuously monitoring system performance and identifying the presence of faults or abnormalities. However, traditional FM methods face limitations in fully capturing the complex interactions within a system and providing real-time monitoring capabilities. To overcome these challenges, Digital Twin (DT) technology has emerged as a promising solution to enhance existing FM practices. By creating a virtual replica or digital copy of a physical equipment or system, DT offers the potential to revolutionize fault monitoring approaches. This paper aims to explore and discuss the diverse range of predictive methods utilized in DT and their implementations in FM across industries. Furthermore, it will showcase successful implementations of DT in FM across a wide array of industries, including manufacturing, energy, transportation, and healthcare. The utilization of DT in FM enables a comprehensive understanding of system behavior and performance by leveraging real-time data, advanced analytics, and machine learning algorithms. By integrating physical and virtual components, DT facilitates the monitoring and prediction of faults, providing valuable insights into the system’s health and enabling proactive maintenance and decision making. |
format | Online Article Text |
id | pubmed-10458716 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104587162023-08-27 Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities Bofill, Jherson Abisado, Mideth Villaverde, Jocelyn Sampedro, Gabriel Avelino Sensors (Basel) Review High efficiency and safety are critical factors in ensuring the optimal performance and reliability of systems and equipment across various industries. Fault monitoring (FM) techniques play a pivotal role in this regard by continuously monitoring system performance and identifying the presence of faults or abnormalities. However, traditional FM methods face limitations in fully capturing the complex interactions within a system and providing real-time monitoring capabilities. To overcome these challenges, Digital Twin (DT) technology has emerged as a promising solution to enhance existing FM practices. By creating a virtual replica or digital copy of a physical equipment or system, DT offers the potential to revolutionize fault monitoring approaches. This paper aims to explore and discuss the diverse range of predictive methods utilized in DT and their implementations in FM across industries. Furthermore, it will showcase successful implementations of DT in FM across a wide array of industries, including manufacturing, energy, transportation, and healthcare. The utilization of DT in FM enables a comprehensive understanding of system behavior and performance by leveraging real-time data, advanced analytics, and machine learning algorithms. By integrating physical and virtual components, DT facilitates the monitoring and prediction of faults, providing valuable insights into the system’s health and enabling proactive maintenance and decision making. MDPI 2023-08-10 /pmc/articles/PMC10458716/ /pubmed/37631622 http://dx.doi.org/10.3390/s23167087 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bofill, Jherson Abisado, Mideth Villaverde, Jocelyn Sampedro, Gabriel Avelino Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title | Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title_full | Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title_fullStr | Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title_full_unstemmed | Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title_short | Exploring Digital Twin-Based Fault Monitoring: Challenges and Opportunities |
title_sort | exploring digital twin-based fault monitoring: challenges and opportunities |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458716/ https://www.ncbi.nlm.nih.gov/pubmed/37631622 http://dx.doi.org/10.3390/s23167087 |
work_keys_str_mv | AT bofilljherson exploringdigitaltwinbasedfaultmonitoringchallengesandopportunities AT abisadomideth exploringdigitaltwinbasedfaultmonitoringchallengesandopportunities AT villaverdejocelyn exploringdigitaltwinbasedfaultmonitoringchallengesandopportunities AT sampedrogabrielavelino exploringdigitaltwinbasedfaultmonitoringchallengesandopportunities |