Cargando…

Construction of a Bis(benzene sulfonyl)imide-Based Single-ion Polymer Artificial Layer for a Steady Lithium Metal Anode

Dendrite growth and parasitic reactions with liquid electrolyte are the two key factors that restrict the practical application of the lithium metal anode. Herein, a bis(benzene sulfonyl)imide based single-ion polymer artificial layer for a lithium metal anode is successfully constructed, which is p...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yujie, Zhao, Mengmeng, Chen, Yazhou, Bao, Haifeng, Li, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458740/
https://www.ncbi.nlm.nih.gov/pubmed/37631547
http://dx.doi.org/10.3390/polym15163490
Descripción
Sumario:Dendrite growth and parasitic reactions with liquid electrolyte are the two key factors that restrict the practical application of the lithium metal anode. Herein, a bis(benzene sulfonyl)imide based single-ion polymer artificial layer for a lithium metal anode is successfully constructed, which is prepared via blending the as-prepared copolymer of lithiated 4, 4′-dicarboxyl bis(benzene sulfonyl)imide and 4,4′-diaminodiphenyl ether on the surface of lithium foil. This single-ion polymer artificial layer enables compact structure with unique continuous aggregated Li(+) clusters, thus reducing the direct contact between lithium metal and electrolyte simultaneously, ensuring Li(+) transport is fast and homogeneous. Based on which, the coulombic efficiency of the Li|Cu half-cell is effectively improved, and the cycle stability of the Li|Li symmetric cell can be prolonged from 160 h to 240 h. Surficial morphology and elemental valence analysis confirm that the bis(benzene sulfonyl)imide based single-ion polymer artificial layer effectively facilitates the Li(+) uniform deposition and suppresses parasitic reactions between lithium metal anode and liquid electrolyte in the LFP|Li full-cell. This strategy provides a new perspective to achieve a steady lithium metal anode, which can be a promising candidate in practical applications.