Cargando…

Reactive Blending of Modified Thermoplastic Starch Chlorhexidine Gluconate and Poly(butylene succinate) Blending with Epoxy Compatibilizer

Biodegradable starch-based polymers were developed by melt-blending modified thermoplastic starch (MTPS) with poly(butylene succinate) (PBS) blended with epoxy resin (Er). A modified thermoplastic starch blend with chlorhexidine gluconate (MTPSCh) was prepared by melt-blending cassava starch with gl...

Descripción completa

Detalles Bibliográficos
Autores principales: Thajai, Nanthicha, Rachtanapun, Pornchai, Thanakkasaranee, Sarinthip, Punyodom, Winita, Worajittiphon, Patnarin, Phimolsiripol, Yuthana, Leksawasdi, Noppol, Ross, Sukunya, Jantrawut, Pensak, Jantanasakulwong, Kittisak
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458758/
https://www.ncbi.nlm.nih.gov/pubmed/37631544
http://dx.doi.org/10.3390/polym15163487
Descripción
Sumario:Biodegradable starch-based polymers were developed by melt-blending modified thermoplastic starch (MTPS) with poly(butylene succinate) (PBS) blended with epoxy resin (Er). A modified thermoplastic starch blend with chlorhexidine gluconate (MTPSCh) was prepared by melt-blending cassava starch with glycerol and chlorhexidine gluconate (CHG) 1.0% wt. The Er was melt-blended with PBS (PBSE) at concentrations of 0.50%, 1.0%, 2.5%, and 5.0% (wt%/wt%). The mechanical properties, water resistance, and morphology of the MTPSCh/PBSE blends were investigated. The MTPSCh/PBSE2.5% blend showed an improvement in tensile strength (8.1 MPa) and elongation at break (86%) compared to the TPSCh/PBS blend (2.6 MPa and 53%, respectively). In addition, water contact angle measurements indicated an increase in the hydrophobicity of the MTPSCh/PBSE blends. Thermogravimetric analysis showed an improvement in thermal stability when PBS was added to the MTPSCh blends. Fourier transform infrared spectroscopy data confirmed a new reaction between the amino groups of CHG in MTPSCh and the epoxy groups of Er in PBSE, which improved the interfacial adhesion of the MTPSCh/PBSE blends. This reaction improved the mechanical properties, water resistance, morphology, and thermal stability of the TPSCh/PBSE blends.