Cargando…
Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains
Armillaria sp. 541, a genus of root-infecting fungi, forms a symbiosis with traditional Chinese medicine Gastrodia elata (Orchid) and Polyporus umbellatus via extensive networks of durable rhizomorphs. It is not clear the hallmarks of comparative transcriptome between the rhizomorphs and hyphae of A...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458900/ https://www.ncbi.nlm.nih.gov/pubmed/37630474 http://dx.doi.org/10.3390/microorganisms11081914 |
_version_ | 1785097277460709376 |
---|---|
author | Li, Bing Liu, Liu Zhang, Dawei Guo, Shunxing |
author_facet | Li, Bing Liu, Liu Zhang, Dawei Guo, Shunxing |
author_sort | Li, Bing |
collection | PubMed |
description | Armillaria sp. 541, a genus of root-infecting fungi, forms a symbiosis with traditional Chinese medicine Gastrodia elata (Orchid) and Polyporus umbellatus via extensive networks of durable rhizomorphs. It is not clear the hallmarks of comparative transcriptome between the rhizomorphs and hyphae of Armillaria sp. 541. In the present study, transcriptomic analysis of Armillaria sp. 541 identified 475 differentially expressed genes (DEGs) between Armillaria rhizomorphs (AR) and hyphae (AH). Of them, 285 genes were upregulated and 190 were downregulated. Bioinformatics analyses and tests demonstrated DEGs involved in oxidoreductase activity and peptidoglycan binding were significantly enriched in this process when rhizomorph formed from hyphae. We accordingly obtained 14 gene-encoding proteins containing the LysM domain, and further consensus pattern and phylogenetic analysis indicated that their amino acid sequences were conserved and their biological functions may be peptidoglycan binding for recognition between the fungus and host. Among these genes, one, named Armillaria LysM domain recognition gene (aLDRG), was expressed significantly when rhizomorphs were differentiated from hyphae. It was located in the cortical cells of the rhizomorph by in situ hybridization. Furthermore, biolayer interferometry (BLI) assay demonstrated that aLDRG can bind specifically to chitin oligosaccharide of the fungal cell wall, including N,N′,N″-Triacetylchitotriose (CO3) and N,N′,N″,N′″,N″″-Pentaacetylchitopentaose (CO5). Therefore, we deduced that Armillaria sp. 541 expressed higher levels of LysM protein aLDRG for better binding of oligosaccharide after rhizomorphs were generated. This study provides functional genes for further studies on the interaction between Armillaria sp. 541 and its host. |
format | Online Article Text |
id | pubmed-10458900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104589002023-08-27 Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains Li, Bing Liu, Liu Zhang, Dawei Guo, Shunxing Microorganisms Article Armillaria sp. 541, a genus of root-infecting fungi, forms a symbiosis with traditional Chinese medicine Gastrodia elata (Orchid) and Polyporus umbellatus via extensive networks of durable rhizomorphs. It is not clear the hallmarks of comparative transcriptome between the rhizomorphs and hyphae of Armillaria sp. 541. In the present study, transcriptomic analysis of Armillaria sp. 541 identified 475 differentially expressed genes (DEGs) between Armillaria rhizomorphs (AR) and hyphae (AH). Of them, 285 genes were upregulated and 190 were downregulated. Bioinformatics analyses and tests demonstrated DEGs involved in oxidoreductase activity and peptidoglycan binding were significantly enriched in this process when rhizomorph formed from hyphae. We accordingly obtained 14 gene-encoding proteins containing the LysM domain, and further consensus pattern and phylogenetic analysis indicated that their amino acid sequences were conserved and their biological functions may be peptidoglycan binding for recognition between the fungus and host. Among these genes, one, named Armillaria LysM domain recognition gene (aLDRG), was expressed significantly when rhizomorphs were differentiated from hyphae. It was located in the cortical cells of the rhizomorph by in situ hybridization. Furthermore, biolayer interferometry (BLI) assay demonstrated that aLDRG can bind specifically to chitin oligosaccharide of the fungal cell wall, including N,N′,N″-Triacetylchitotriose (CO3) and N,N′,N″,N′″,N″″-Pentaacetylchitopentaose (CO5). Therefore, we deduced that Armillaria sp. 541 expressed higher levels of LysM protein aLDRG for better binding of oligosaccharide after rhizomorphs were generated. This study provides functional genes for further studies on the interaction between Armillaria sp. 541 and its host. MDPI 2023-07-27 /pmc/articles/PMC10458900/ /pubmed/37630474 http://dx.doi.org/10.3390/microorganisms11081914 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Bing Liu, Liu Zhang, Dawei Guo, Shunxing Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title | Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title_full | Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title_fullStr | Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title_full_unstemmed | Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title_short | Hallmarks of Comparative Transcriptome between Rhizomorphs and Hyphae of Armillaria sp. 541 Participating in Fungal Symbiosis with Emphasis on LysM Domains |
title_sort | hallmarks of comparative transcriptome between rhizomorphs and hyphae of armillaria sp. 541 participating in fungal symbiosis with emphasis on lysm domains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10458900/ https://www.ncbi.nlm.nih.gov/pubmed/37630474 http://dx.doi.org/10.3390/microorganisms11081914 |
work_keys_str_mv | AT libing hallmarksofcomparativetranscriptomebetweenrhizomorphsandhyphaeofarmillariasp541participatinginfungalsymbiosiswithemphasisonlysmdomains AT liuliu hallmarksofcomparativetranscriptomebetweenrhizomorphsandhyphaeofarmillariasp541participatinginfungalsymbiosiswithemphasisonlysmdomains AT zhangdawei hallmarksofcomparativetranscriptomebetweenrhizomorphsandhyphaeofarmillariasp541participatinginfungalsymbiosiswithemphasisonlysmdomains AT guoshunxing hallmarksofcomparativetranscriptomebetweenrhizomorphsandhyphaeofarmillariasp541participatinginfungalsymbiosiswithemphasisonlysmdomains |