Cargando…

Enhanced Slime Mould Optimization with Deep-Learning-Based Resource Allocation in UAV-Enabled Wireless Networks

Unmanned aerial vehicle (UAV) networks offer a wide range of applications in an overload situation, broadcasting and advertising, public safety, disaster management, etc. Providing robust communication services to mobile users (MUs) is a challenging task because of the dynamic characteristics of MUs...

Descripción completa

Detalles Bibliográficos
Autores principales: Alkanhel, Reem, Rafiq, Ahsan, Mokrov, Evgeny, Khakimov, Abdukodir, Muthanna, Mohammed Saleh Ali, Muthanna, Ammar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459001/
https://www.ncbi.nlm.nih.gov/pubmed/37631620
http://dx.doi.org/10.3390/s23167083
Descripción
Sumario:Unmanned aerial vehicle (UAV) networks offer a wide range of applications in an overload situation, broadcasting and advertising, public safety, disaster management, etc. Providing robust communication services to mobile users (MUs) is a challenging task because of the dynamic characteristics of MUs. Resource allocation, including subchannels, transmit power, and serving users, is a critical transmission problem; further, it is also crucial to improve the coverage and energy efficacy of UAV-assisted transmission networks. This paper presents an Enhanced Slime Mould Optimization with Deep-Learning-based Resource Allocation Approach (ESMOML-RAA) in UAV-enabled wireless networks. The presented ESMOML-RAA technique aims to efficiently accomplish computationally and energy-effective decisions. In addition, the ESMOML-RAA technique considers a UAV as a learning agent with the formation of a resource assignment decision as an action and designs a reward function with the intention of the minimization of the weighted resource consumption. For resource allocation, the presented ESMOML-RAA technique employs a highly parallelized long short-term memory (HP-LSTM) model with an ESMO algorithm as a hyperparameter optimizer. Using the ESMO algorithm helps properly tune the hyperparameters related to the HP-LSTM model. The performance validation of the ESMOML-RAA technique is tested using a series of simulations. This comparison study reports the enhanced performance of the ESMOML-RAA technique over other ML models.