Cargando…
Enhanced Slime Mould Optimization with Deep-Learning-Based Resource Allocation in UAV-Enabled Wireless Networks
Unmanned aerial vehicle (UAV) networks offer a wide range of applications in an overload situation, broadcasting and advertising, public safety, disaster management, etc. Providing robust communication services to mobile users (MUs) is a challenging task because of the dynamic characteristics of MUs...
Autores principales: | Alkanhel, Reem, Rafiq, Ahsan, Mokrov, Evgeny, Khakimov, Abdukodir, Muthanna, Mohammed Saleh Ali, Muthanna, Ammar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459001/ https://www.ncbi.nlm.nih.gov/pubmed/37631620 http://dx.doi.org/10.3390/s23167083 |
Ejemplares similares
-
Evaluating the Quality of Experience Performance Metric for UAV-Based Networks
por: Khakimov, Abdukodir, et al.
Publicado: (2021) -
A Novel Binary Slime Mould Algorithm with AU Strategy for Cognitive Radio Spectrum Allocation
por: Li, Ling, et al.
Publicado: (2021) -
An Adaptive Real-Time Malicious Node Detection Framework Using Machine Learning in Vehicular Ad-Hoc Networks (VANETs)
por: Rashid, Kanwal, et al.
Publicado: (2023) -
Mutational Slime Mould Algorithm for Gene Selection
por: Qiu, Feng, et al.
Publicado: (2022) -
Advances in Physarum machines: sensing and computing with Slime mould
por: Adamatzky, Andrew
Publicado: (2016)