Cargando…
A Residual UNet Denoising Network Based on Multi-Scale Feature Extraction and Attention-Guided Filter
In order to obtain high-quality images, it is very important to remove noise effectively and retain image details reasonably. In this paper, we propose a residual UNet denoising network that adds the attention-guided filter and multi-scale feature extraction blocks. We design a multi-scale feature e...
Autores principales: | Liu, Hualin, Li, Zhe, Lin, Shijie, Cheng, Libo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459023/ https://www.ncbi.nlm.nih.gov/pubmed/37631582 http://dx.doi.org/10.3390/s23167044 |
Ejemplares similares
-
RatUNet: residual U-Net based on attention mechanism for image denoising
por: Zhang, Huibin, et al.
Publicado: (2022) -
MultiResUNet3+: A Full-Scale Connected Multi-Residual UNet Model to Denoise Electrooculogram and Electromyogram Artifacts from Corrupted Electroencephalogram Signals
por: Hossain, Md Shafayet, et al.
Publicado: (2023) -
TMD-Unet: Triple-Unet with Multi-Scale Input Features and Dense Skip Connection for Medical Image Segmentation
por: Tran, Song-Toan, et al.
Publicado: (2021) -
Automatic Extraction of Muscle Parameters with Attention UNet in Ultrasonography
por: Katakis, Sofoklis, et al.
Publicado: (2022) -
SPA-UNet: A liver tumor segmentation network based on fused multi-scale features
por: Li, Weikun, et al.
Publicado: (2023)