Cargando…
Block-Active ADMM to Minimize NMF with Bregman Divergences
Over the last ten years, there has been a significant interest in employing nonnegative matrix factorization (NMF) to reduce dimensionality to enable a more efficient clustering analysis in machine learning. This technique has been applied in various image processing applications within the fields o...
Autores principales: | Li, Xinyao, Tyagi, Akhilesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459034/ https://www.ncbi.nlm.nih.gov/pubmed/37631765 http://dx.doi.org/10.3390/s23167229 |
Ejemplares similares
-
Upper and lower bounds for the Bregman divergence
por: Sprung, Benjamin
Publicado: (2019) -
Information Geometry for Radar Target Detection with Total Jensen–Bregman Divergence
por: Hua, Xiaoqiang, et al.
Publicado: (2018) -
Information Geometry for Covariance Estimation in Heterogeneous Clutter with Total Bregman Divergence
por: Hua, Xiaoqiang, et al.
Publicado: (2018) -
Wireless Sensor Network Localization via Matrix Completion Based on Bregman Divergence
por: Liu, Chunsheng, et al.
Publicado: (2018) -
Statistical Divergences between Densities of Truncated Exponential Families with Nested Supports: Duo Bregman and Duo Jensen Divergences
por: Nielsen, Frank
Publicado: (2022)