Cargando…

Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review

Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible objects, processes, or systems within the digital space, leveraging their capability to simulate and forecast real-world behavior. They have found valuable applications in smart farming, faci...

Descripción completa

Detalles Bibliográficos
Autores principales: Peladarinos, Nikolaos, Piromalis, Dimitrios, Cheimaras, Vasileios, Tserepas, Efthymios, Munteanu, Radu Adrian, Papageorgas, Panagiotis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459062/
https://www.ncbi.nlm.nih.gov/pubmed/37631663
http://dx.doi.org/10.3390/s23167128
_version_ 1785097317946228736
author Peladarinos, Nikolaos
Piromalis, Dimitrios
Cheimaras, Vasileios
Tserepas, Efthymios
Munteanu, Radu Adrian
Papageorgas, Panagiotis
author_facet Peladarinos, Nikolaos
Piromalis, Dimitrios
Cheimaras, Vasileios
Tserepas, Efthymios
Munteanu, Radu Adrian
Papageorgas, Panagiotis
author_sort Peladarinos, Nikolaos
collection PubMed
description Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible objects, processes, or systems within the digital space, leveraging their capability to simulate and forecast real-world behavior. They have found valuable applications in smart farming, facilitating a comprehensive virtual replica of a farm that encompasses vital aspects such as crop cultivation, soil composition, and prevailing weather conditions. By amalgamating data from diverse sources, including soil, plants condition, environmental sensor networks, meteorological predictions, and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and up-to-date visualization of their agricultural domains empowering them to make well-informed and timely choices concerning critical aspects like efficient irrigation plans, optimal fertilization methods, and effective pest management strategies, enhancing overall farm productivity and sustainability. This research paper aims to present a comprehensive overview of the contemporary state of research on digital twins in smart farming, including crop modelling, precision agriculture, and associated technologies, while exploring their potential applications and their impact on agricultural practices, addressing the challenges and limitations such as data privacy concerns, the need for high-quality data for accurate simulations and predictions, and the complexity of integrating multiple data sources. Lastly, the paper explores the prospects of digital twins in agriculture, highlighting potential avenues for future research and advancement in this domain.
format Online
Article
Text
id pubmed-10459062
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104590622023-08-27 Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review Peladarinos, Nikolaos Piromalis, Dimitrios Cheimaras, Vasileios Tserepas, Efthymios Munteanu, Radu Adrian Papageorgas, Panagiotis Sensors (Basel) Review Digital Twins serve as virtual counterparts, replicating the characteristics and functionalities of tangible objects, processes, or systems within the digital space, leveraging their capability to simulate and forecast real-world behavior. They have found valuable applications in smart farming, facilitating a comprehensive virtual replica of a farm that encompasses vital aspects such as crop cultivation, soil composition, and prevailing weather conditions. By amalgamating data from diverse sources, including soil, plants condition, environmental sensor networks, meteorological predictions, and high-resolution UAV and Satellite imagery, farmers gain access to dynamic and up-to-date visualization of their agricultural domains empowering them to make well-informed and timely choices concerning critical aspects like efficient irrigation plans, optimal fertilization methods, and effective pest management strategies, enhancing overall farm productivity and sustainability. This research paper aims to present a comprehensive overview of the contemporary state of research on digital twins in smart farming, including crop modelling, precision agriculture, and associated technologies, while exploring their potential applications and their impact on agricultural practices, addressing the challenges and limitations such as data privacy concerns, the need for high-quality data for accurate simulations and predictions, and the complexity of integrating multiple data sources. Lastly, the paper explores the prospects of digital twins in agriculture, highlighting potential avenues for future research and advancement in this domain. MDPI 2023-08-11 /pmc/articles/PMC10459062/ /pubmed/37631663 http://dx.doi.org/10.3390/s23167128 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Peladarinos, Nikolaos
Piromalis, Dimitrios
Cheimaras, Vasileios
Tserepas, Efthymios
Munteanu, Radu Adrian
Papageorgas, Panagiotis
Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title_full Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title_fullStr Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title_full_unstemmed Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title_short Enhancing Smart Agriculture by Implementing Digital Twins: A Comprehensive Review
title_sort enhancing smart agriculture by implementing digital twins: a comprehensive review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459062/
https://www.ncbi.nlm.nih.gov/pubmed/37631663
http://dx.doi.org/10.3390/s23167128
work_keys_str_mv AT peladarinosnikolaos enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview
AT piromalisdimitrios enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview
AT cheimarasvasileios enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview
AT tserepasefthymios enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview
AT munteanuraduadrian enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview
AT papageorgaspanagiotis enhancingsmartagriculturebyimplementingdigitaltwinsacomprehensivereview