Cargando…
Enhancing Cross-Lingual Entity Alignment in Knowledge Graphs through Structure Similarity Rearrangement
Cross-lingual entity alignment in knowledge graphs is a crucial task in knowledge fusion. This task involves learning low-dimensional embeddings for nodes in different knowledge graphs and identifying equivalent entities across them by measuring the distances between their representation vectors. Ex...
Autores principales: | Liu, Guiyang, Jin, Canghong, Shi, Longxiang, Yang, Cheng, Shuai, Jiangbing, Ying, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459157/ https://www.ncbi.nlm.nih.gov/pubmed/37631633 http://dx.doi.org/10.3390/s23167096 |
Ejemplares similares
-
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
JarKA: Modeling Attribute Interactions for Cross-lingual Knowledge Alignment
por: Chen, Bo, et al.
Publicado: (2020) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021) -
Joint Word and Entity Embeddings for Entity Retrieval from a Knowledge Graph
por: Nikolaev, Fedor, et al.
Publicado: (2020) -
Incremental Multi-source Entity Resolution for Knowledge Graph Completion
por: Saeedi, Alieh, et al.
Publicado: (2020)