Cargando…
Malicious Traffic Identification with Self-Supervised Contrastive Learning
As the demand for Internet access increases, malicious traffic on the Internet has soared also. In view of the fact that the existing malicious-traffic-identification methods suffer from low accuracy, this paper proposes a malicious-traffic-identification method based on contrastive learning. The pr...
Autores principales: | Yang, Jin, Jiang, Xinyun, Liang, Gang, Li, Siyu, Ma, Zicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459182/ https://www.ncbi.nlm.nih.gov/pubmed/37631752 http://dx.doi.org/10.3390/s23167215 |
Ejemplares similares
-
A Framework for Malicious Traffic Detection in IoT Healthcare Environment
por: Hussain, Faisal, et al.
Publicado: (2021) -
Malicious attack propagation and source identification
por: Jiang, Jiaojiao, et al.
Publicado: (2018) -
Malicious Network Traffic Detection Based on Deep Neural Networks and Association Analysis
por: Gao, Minghui, et al.
Publicado: (2020) -
Classification of Normal and Malicious Traffic Based on an Ensemble of Machine Learning for a Vehicle CAN-Network
por: Alalwany, Easa, et al.
Publicado: (2022) -
Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning
por: Nartey, Obed Tettey, et al.
Publicado: (2020)