Cargando…

Path Following and Collision Avoidance of a Ribbon-Fin Propelled Underwater Biomimetic Vehicle-Manipulator System

This paper addresses the problem of path following and dynamic obstacle avoidance for an underwater biomimetic vehicle-manipulator system (UBVMS). Firstly, the general kinematic and dynamic models of underwater vehicles are presented; then, a nonlinear model predictive control (NMPC) scheme is emplo...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Yanbing, Dong, Xiang, Wang, Yu, Wang, Shuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459250/
https://www.ncbi.nlm.nih.gov/pubmed/37631598
http://dx.doi.org/10.3390/s23167061
Descripción
Sumario:This paper addresses the problem of path following and dynamic obstacle avoidance for an underwater biomimetic vehicle-manipulator system (UBVMS). Firstly, the general kinematic and dynamic models of underwater vehicles are presented; then, a nonlinear model predictive control (NMPC) scheme is employed to track a reference path and collision avoidance simultaneously. Moreover, to minimize the tracking error and for a higher degree of robustness, improved extended state observers are used to estimate model uncertainties and disturbances to be fed into the NMPC prediction model. On top of this, the proposed method also considers the uncertainty of the state estimator, while combining a priori estimation of the Kalman filter to reasonably predict the position of dynamic obstacles during short periods. Finally, simulations and experimental results are carried out to assess the validity of the proposed method in case of disturbances and constraints.