Cargando…

Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection

RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain mislea...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shuaihui, Jiang, Fengyi, Xu, Boqian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459329/
https://www.ncbi.nlm.nih.gov/pubmed/37631757
http://dx.doi.org/10.3390/s23167221
_version_ 1785097385186164736
author Wang, Shuaihui
Jiang, Fengyi
Xu, Boqian
author_facet Wang, Shuaihui
Jiang, Fengyi
Xu, Boqian
author_sort Wang, Shuaihui
collection PubMed
description RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G(2)CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G(2)CMCSNet over different scales. With all these modules working together, G(2)CMCSNet effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G(2)CMCSNet outperforms existing state-of-the-art methods.
format Online
Article
Text
id pubmed-10459329
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104593292023-08-27 Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection Wang, Shuaihui Jiang, Fengyi Xu, Boqian Sensors (Basel) Article RGB-D saliency detection aims to accurately localize salient regions using the complementary information of a depth map. Global contexts carried by the deep layer are key to salient objection detection, but they are diluted when transferred to shallower layers. Besides, depth maps may contain misleading information due to the depth sensors. To tackle these issues, in this paper, we propose a new cross-modal cross-scale network for RGB-D salient object detection, where the global context information provides global guidance to boost performance in complex scenarios. First, we introduce a global guided cross-modal and cross-scale module named G(2)CMCSM to realize global guided cross-modal cross-scale fusion. Then, we employ feature refinement modules for progressive refinement in a coarse-to-fine manner. In addition, we adopt a hybrid loss function to supervise the training of G(2)CMCSNet over different scales. With all these modules working together, G(2)CMCSNet effectively enhances both salient object details and salient object localization. Extensive experiments on challenging benchmark datasets demonstrate that our G(2)CMCSNet outperforms existing state-of-the-art methods. MDPI 2023-08-17 /pmc/articles/PMC10459329/ /pubmed/37631757 http://dx.doi.org/10.3390/s23167221 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Wang, Shuaihui
Jiang, Fengyi
Xu, Boqian
Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title_full Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title_fullStr Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title_full_unstemmed Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title_short Global Guided Cross-Modal Cross-Scale Network for RGB-D Salient Object Detection
title_sort global guided cross-modal cross-scale network for rgb-d salient object detection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459329/
https://www.ncbi.nlm.nih.gov/pubmed/37631757
http://dx.doi.org/10.3390/s23167221
work_keys_str_mv AT wangshuaihui globalguidedcrossmodalcrossscalenetworkforrgbdsalientobjectdetection
AT jiangfengyi globalguidedcrossmodalcrossscalenetworkforrgbdsalientobjectdetection
AT xuboqian globalguidedcrossmodalcrossscalenetworkforrgbdsalientobjectdetection