Cargando…
Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules
Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459369/ https://www.ncbi.nlm.nih.gov/pubmed/37630337 http://dx.doi.org/10.3390/molecules28166085 |
_version_ | 1785097394937921536 |
---|---|
author | Mahmut, Zulpya Zhang, Chunmei Ruan, Fei Shi, Nan Zhang, Xinyao Wang, Yuda Zheng, Xianhong Tang, Zixin Dong, Biao Gao, Donghui Sun, Jiao |
author_facet | Mahmut, Zulpya Zhang, Chunmei Ruan, Fei Shi, Nan Zhang, Xinyao Wang, Yuda Zheng, Xianhong Tang, Zixin Dong, Biao Gao, Donghui Sun, Jiao |
author_sort | Mahmut, Zulpya |
collection | PubMed |
description | Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research. |
format | Online Article Text |
id | pubmed-10459369 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104593692023-08-27 Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules Mahmut, Zulpya Zhang, Chunmei Ruan, Fei Shi, Nan Zhang, Xinyao Wang, Yuda Zheng, Xianhong Tang, Zixin Dong, Biao Gao, Donghui Sun, Jiao Molecules Review Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research. MDPI 2023-08-16 /pmc/articles/PMC10459369/ /pubmed/37630337 http://dx.doi.org/10.3390/molecules28166085 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Mahmut, Zulpya Zhang, Chunmei Ruan, Fei Shi, Nan Zhang, Xinyao Wang, Yuda Zheng, Xianhong Tang, Zixin Dong, Biao Gao, Donghui Sun, Jiao Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title | Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title_full | Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title_fullStr | Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title_full_unstemmed | Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title_short | Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules |
title_sort | medical applications and advancement of near infrared photosensitive indocyanine green molecules |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459369/ https://www.ncbi.nlm.nih.gov/pubmed/37630337 http://dx.doi.org/10.3390/molecules28166085 |
work_keys_str_mv | AT mahmutzulpya medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT zhangchunmei medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT ruanfei medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT shinan medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT zhangxinyao medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT wangyuda medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT zhengxianhong medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT tangzixin medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT dongbiao medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT gaodonghui medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules AT sunjiao medicalapplicationsandadvancementofnearinfraredphotosensitiveindocyaninegreenmolecules |