Cargando…
Smart Contract Vulnerability Detection Based on Deep Learning and Multimodal Decision Fusion
With the rapid development and widespread application of blockchain technology in recent years, smart contracts running on blockchains often face security vulnerability problems, resulting in significant economic losses. Unlike traditional programs, smart contracts cannot be modified once deployed,...
Autores principales: | Deng, Weichu, Wei, Huanchun, Huang, Teng, Cao, Cong, Peng, Yun, Hu, Xuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459372/ https://www.ncbi.nlm.nih.gov/pubmed/37631785 http://dx.doi.org/10.3390/s23167246 |
Ejemplares similares
-
Deep learning-based solution for smart contract vulnerabilities detection
por: Tang, Xueyan, et al.
Publicado: (2023) -
Smart Contract Vulnerability Detection Model Based on Multi-Task Learning
por: Huang, Jing, et al.
Publicado: (2022) -
A Novel Smart Contract Vulnerability Detection Method Based on Information Graph and Ensemble Learning
por: Zhang, Lejun, et al.
Publicado: (2022) -
Multimodal deep learning for biomedical data fusion: a review
por: Stahlschmidt, Sören Richard, et al.
Publicado: (2022) -
CBGRU: A Detection Method of Smart Contract Vulnerability Based on a Hybrid Model
por: Zhang, Lejun, et al.
Publicado: (2022)