Cargando…

An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction

The prediction of system degradation is very important as it serves as an important basis for the formulation of condition-based maintenance strategies. An effective health indicator (HI) plays a key role in the prediction of system degradation as it enables vital information for critical tasks rang...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Lin, Pan, Xin, Liu, Yajie, Gong, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459474/
https://www.ncbi.nlm.nih.gov/pubmed/37631775
http://dx.doi.org/10.3390/s23167239
_version_ 1785097420090114048
author Huang, Lin
Pan, Xin
Liu, Yajie
Gong, Li
author_facet Huang, Lin
Pan, Xin
Liu, Yajie
Gong, Li
author_sort Huang, Lin
collection PubMed
description The prediction of system degradation is very important as it serves as an important basis for the formulation of condition-based maintenance strategies. An effective health indicator (HI) plays a key role in the prediction of system degradation as it enables vital information for critical tasks ranging from fault diagnosis to remaining useful life prediction. To address this issue, a method for monitoring data fusion and health indicator construction based on an autoencoder (AE) and a long short-term memory (LSTM) network is proposed in this study to improve the predictability and effectiveness of health indicators. Firstly, an unsupervised method and overall framework for HI construction is built based on a deep autoencoder and an LSTM neural network. The neural network is trained fully based on the normal operating monitoring data and then the construction error of the AE model is adopted as the health indicator of the system. Secondly, we propose related machine learning techniques for monitoring data processing to overcome the issue of data fusion, such as mutual information for sensor selection and t-distributed stochastic neighbor embedding (T-SNE) for operating condition identification. Thirdly, in order to verify the performance of the proposed method, experiments are conducted based on the CMAPSS dataset and results are compared with algorithms of principal component analysis (PCA) and a vanilla autoencoder model. Result shows that the LSTM-AE model outperforms the PCA and Vanilla-AE model in the metrics of monotonicity, trendability, prognosability, and fitness. Fourthly, in order to analyze the impact of the time step of the LSMT-AE model on HI construction, we construct and analyze the system HI curve under different time steps of 5, 10, 15, 20, and 25 cycles. Finally, the results demonstrate that the proposed method for HI construction can effectively characterize the health state of a system, which is helpful for the development of further failure prognostics and converting the scheduled maintenance into condition-based maintenance.
format Online
Article
Text
id pubmed-10459474
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104594742023-08-27 An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction Huang, Lin Pan, Xin Liu, Yajie Gong, Li Sensors (Basel) Article The prediction of system degradation is very important as it serves as an important basis for the formulation of condition-based maintenance strategies. An effective health indicator (HI) plays a key role in the prediction of system degradation as it enables vital information for critical tasks ranging from fault diagnosis to remaining useful life prediction. To address this issue, a method for monitoring data fusion and health indicator construction based on an autoencoder (AE) and a long short-term memory (LSTM) network is proposed in this study to improve the predictability and effectiveness of health indicators. Firstly, an unsupervised method and overall framework for HI construction is built based on a deep autoencoder and an LSTM neural network. The neural network is trained fully based on the normal operating monitoring data and then the construction error of the AE model is adopted as the health indicator of the system. Secondly, we propose related machine learning techniques for monitoring data processing to overcome the issue of data fusion, such as mutual information for sensor selection and t-distributed stochastic neighbor embedding (T-SNE) for operating condition identification. Thirdly, in order to verify the performance of the proposed method, experiments are conducted based on the CMAPSS dataset and results are compared with algorithms of principal component analysis (PCA) and a vanilla autoencoder model. Result shows that the LSTM-AE model outperforms the PCA and Vanilla-AE model in the metrics of monotonicity, trendability, prognosability, and fitness. Fourthly, in order to analyze the impact of the time step of the LSMT-AE model on HI construction, we construct and analyze the system HI curve under different time steps of 5, 10, 15, 20, and 25 cycles. Finally, the results demonstrate that the proposed method for HI construction can effectively characterize the health state of a system, which is helpful for the development of further failure prognostics and converting the scheduled maintenance into condition-based maintenance. MDPI 2023-08-18 /pmc/articles/PMC10459474/ /pubmed/37631775 http://dx.doi.org/10.3390/s23167239 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huang, Lin
Pan, Xin
Liu, Yajie
Gong, Li
An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title_full An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title_fullStr An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title_full_unstemmed An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title_short An Unsupervised Machine Learning Approach for Monitoring Data Fusion and Health Indicator Construction
title_sort unsupervised machine learning approach for monitoring data fusion and health indicator construction
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459474/
https://www.ncbi.nlm.nih.gov/pubmed/37631775
http://dx.doi.org/10.3390/s23167239
work_keys_str_mv AT huanglin anunsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT panxin anunsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT liuyajie anunsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT gongli anunsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT huanglin unsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT panxin unsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT liuyajie unsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction
AT gongli unsupervisedmachinelearningapproachformonitoringdatafusionandhealthindicatorconstruction