Cargando…
Physics-Informed Neural Networks Integrating Compartmental Model for Analyzing COVID-19 Transmission Dynamics
Modelling and predicting the behaviour of infectious diseases is essential for early warning and evaluating the most effective interventions to prevent significant harm. Compartmental models produce a system of ordinary differential equations (ODEs) that are renowned for simulating the transmission...
Autores principales: | Ning, Xiao, Guan, Jinxing, Li, Xi-An, Wei, Yongyue, Chen, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459488/ https://www.ncbi.nlm.nih.gov/pubmed/37632091 http://dx.doi.org/10.3390/v15081749 |
Ejemplares similares
-
Epi-DNNs: Epidemiological priors informed deep neural networks for modeling COVID-19 dynamics
por: Ning, Xiao, et al.
Publicado: (2023) -
Modeling the transmission dynamics of COVID-19 epidemic: a systematic review
por: Guan, Jinxing, et al.
Publicado: (2020) -
Transmission dynamics model and the coronavirus disease 2019 epidemic: applications and challenges
por: Guan, Jinxing, et al.
Publicado: (2022) -
Simple Compartmental Models for Disease Transmission
por: Brauer, Fred, et al.
Publicado: (2019) -
Compartmental mathematical modelling of dynamic transmission of COVID-19 in Rwanda
por: Mpinganzima, Lydie, et al.
Publicado: (2023)