Cargando…
Unsupervised Spiking Neural Network with Dynamic Learning of Inhibitory Neurons
A spiking neural network (SNN) is a type of artificial neural network that operates based on discrete spikes to process timing information, similar to the manner in which the human brain processes real-world problems. In this paper, we propose a new spiking neural network (SNN) based on conventional...
Autores principales: | Yang, Geunbo, Lee, Wongyu, Seo, Youjung, Lee, Choongseop, Seok, Woojoon, Park, Jongkil, Sim, Donggyu, Park, Cheolsoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459513/ https://www.ncbi.nlm.nih.gov/pubmed/37631767 http://dx.doi.org/10.3390/s23167232 |
Ejemplares similares
-
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Efficiently Updating ECG-Based Biometric Authentication Based on Incremental Learning
por: Kim, Junmo, et al.
Publicado: (2021) -
Neural encoding with unsupervised spiking convolutional neural network
por: Wang, Chong, et al.
Publicado: (2023) -
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
por: Baek, Suwhan, et al.
Publicado: (2023) -
A 22-pJ/spike 73-Mspikes/s 130k-compartment neural array transceiver with conductance-based synaptic and membrane dynamics
por: Park, Jongkil, et al.
Publicado: (2023)