Cargando…
Magnesium Binding by Cyberlindnera jadinii Yeast in Media from Potato Wastewater and Glycerol
The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459593/ https://www.ncbi.nlm.nih.gov/pubmed/37630483 http://dx.doi.org/10.3390/microorganisms11081923 |
Sumario: | The aim of this study was to determine the magnesium-binding capacity of Cyberlindnera jadinii yeast in media prepared from potato wastewater and glycerol (after biodiesel production), supplemented with magnesium salt. The research was carried out in two stages. In the first, the ability to binding magnesium by yeast in media supplemented with various doses of this element was tested. In the second stage, after selecting the appropriate dose of magnesium, the culture was carried out in a bioreactor. The composition of the yeast biomass was also analysed in terms of lipids and protein content and amino acid composition. Studies have shown that this type of medium can be used as a culture medium for the growth of C. jadinii yeast. In the first stage of the study, the most magnesium (8.97 mg/g(d.m.)) was bound by yeast cells after 48 h of cultivation in a medium supplemented with the addition of magnesium at a dose of 2 g/L. In the second stage of the research, the highest magnesium content in the biomass (7.9 mg/g(d.m.)) was noted after 24 h of cultivation in the same medium. The lipid and protein contents in the biomass obtained after 24 h of cultivation in the bioreactor were 6.35 and 43.73%, respectively. The main fatty acids present in the yeast lipids were oleic acid (59.4%) and linoleic acid (8.6%). Analysis of the amino acid profile of the proteins showed the highest proportions were glutamic acid (13.7%) and aspartic acid (11%). |
---|