Cargando…
Adversarial Deep Transfer Learning in Fault Diagnosis: Progress, Challenges, and Future Prospects
Deep Transfer Learning (DTL) signifies a novel paradigm in machine learning, merging the superiorities of deep learning in feature representation with the merits of transfer learning in knowledge transference. This synergistic integration propels DTL to the forefront of research and development with...
Autores principales: | Guo, Yu, Zhang, Jundong, Sun, Bin, Wang, Yongkang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459647/ https://www.ncbi.nlm.nih.gov/pubmed/37631799 http://dx.doi.org/10.3390/s23167263 |
Ejemplares similares
-
Fault Diagnosis Method of Roadheader Bearing Based on VMD and Domain Adaptive Transfer Learning
por: Qu, Xiaofei, et al.
Publicado: (2023) -
Quantum Adversarial Transfer Learning
por: Wang, Longhan, et al.
Publicado: (2023) -
Deep transfer learning strategy for efficient domain generalisation in machine fault diagnosis
por: Asutkar, Supriya, et al.
Publicado: (2023) -
Generative Adversarial Learning Enhanced Fault Diagnosis for Planetary Gearbox under Varying Working Conditions
por: Wen, Weigang, et al.
Publicado: (2020) -
Triplet Loss Guided Adversarial Domain Adaptation for Bearing Fault Diagnosis
por: Wang, Xiaodong, et al.
Publicado: (2020)