Cargando…
A Comprehensive Overview of IoT-Based Federated Learning: Focusing on Client Selection Methods
The integration of the Internet of Things (IoT) with machine learning (ML) is revolutionizing how services and applications impact our daily lives. In traditional ML methods, data are collected and processed centrally. However, modern IoT networks face challenges in implementing this approach due to...
Autores principales: | Khajehali, Naghmeh, Yan, Jun, Chow, Yang-Wai, Fahmideh, Mahdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459674/ https://www.ncbi.nlm.nih.gov/pubmed/37631771 http://dx.doi.org/10.3390/s23167235 |
Ejemplares similares
-
Special Issue on IoT for Fighting COVID-19
por: Boldrini, Chiara, et al.
Publicado: (2021) -
Integration of Blockchain Technology and Federated Learning in Vehicular (IoT) Networks: A Comprehensive Survey
por: Javed, Abdul Rehman, et al.
Publicado: (2022) -
FedDdrl: Federated Double Deep Reinforcement Learning for Heterogeneous IoT with Adaptive Early Client Termination and Local Epoch Adjustment
por: Wong, Yi Jie, et al.
Publicado: (2023) -
Survey of Time Series Data Generation in IoT
por: Hu, Chaochen, et al.
Publicado: (2023) -
Federated Reinforcement Learning for Training Control Policies on Multiple IoT Devices
por: Lim, Hyun-Kyo, et al.
Publicado: (2020)