Cargando…

Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration

Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Xiaofang, Lin, Minggang, Li, Tan, Lu, Hao, Qi, Huan, Chen, Ting, Wu, Lili, Zhang, Chuyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459721/
https://www.ncbi.nlm.nih.gov/pubmed/37631422
http://dx.doi.org/10.3390/polym15163365
_version_ 1785097479833780224
author Lin, Xiaofang
Lin, Minggang
Li, Tan
Lu, Hao
Qi, Huan
Chen, Ting
Wu, Lili
Zhang, Chuyang
author_facet Lin, Xiaofang
Lin, Minggang
Li, Tan
Lu, Hao
Qi, Huan
Chen, Ting
Wu, Lili
Zhang, Chuyang
author_sort Lin, Xiaofang
collection PubMed
description Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this study, a crimped masterbatch (CM) is added to polypropylene feedstocks to produce curling fibers through melt-blown spinning. These curled fibers exhibit low filtration resistance and effective dust-holding performances when used for air filtration. The effect of adding CM on fiber diameter, pore size, crimp, porosity, roughness, and surface potential was studied. The filtration performance of the materials, including the PM filtration capabilities, recirculation filtration, and loading test performance, were also investigated. The results demonstrate that the degree of fiber crimp can be adjusted by incorporating varying amounts of CM. This curling was caused by the uneven shrinkage that occurred due to variations in thermal contraction between these polymers. The curled fibers created a fluffy structure in the fiber network and modified the distribution of pore sizes within it. Under the same filtration conditions as sodium chloride aerogel, CM–2 (PP:CM 8:2) exhibited similar filtration efficiency (95.54% vs. 94.74%), lower filtration resistance (88.68 Pa vs. 108.88 Pa), higher quality factor (0.035 Pa(−1) vs. 0.028 Pa(−1)) and better dust holding capacity (10.39 g/m(2) vs. 9.20 g/m(2)) compared to CM–0 (PP:CM 10:0). After 30 days of indoor storage, the filtration efficiency of CM–2 remained above 94%. The self-curling melt-blown filtration material developed here could potentially be applied in the field of protective masks.
format Online
Article
Text
id pubmed-10459721
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-104597212023-08-27 Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration Lin, Xiaofang Lin, Minggang Li, Tan Lu, Hao Qi, Huan Chen, Ting Wu, Lili Zhang, Chuyang Polymers (Basel) Article Particulate matter (PM) and airborne viruses pose significant threats to both the environment and public health. As the most viable solution to prevent the inhalation of these pollutants, there is an urgent demand for face masks with excellent filtration efficiency and low-pressure drop. In this study, a crimped masterbatch (CM) is added to polypropylene feedstocks to produce curling fibers through melt-blown spinning. These curled fibers exhibit low filtration resistance and effective dust-holding performances when used for air filtration. The effect of adding CM on fiber diameter, pore size, crimp, porosity, roughness, and surface potential was studied. The filtration performance of the materials, including the PM filtration capabilities, recirculation filtration, and loading test performance, were also investigated. The results demonstrate that the degree of fiber crimp can be adjusted by incorporating varying amounts of CM. This curling was caused by the uneven shrinkage that occurred due to variations in thermal contraction between these polymers. The curled fibers created a fluffy structure in the fiber network and modified the distribution of pore sizes within it. Under the same filtration conditions as sodium chloride aerogel, CM–2 (PP:CM 8:2) exhibited similar filtration efficiency (95.54% vs. 94.74%), lower filtration resistance (88.68 Pa vs. 108.88 Pa), higher quality factor (0.035 Pa(−1) vs. 0.028 Pa(−1)) and better dust holding capacity (10.39 g/m(2) vs. 9.20 g/m(2)) compared to CM–0 (PP:CM 10:0). After 30 days of indoor storage, the filtration efficiency of CM–2 remained above 94%. The self-curling melt-blown filtration material developed here could potentially be applied in the field of protective masks. MDPI 2023-08-10 /pmc/articles/PMC10459721/ /pubmed/37631422 http://dx.doi.org/10.3390/polym15163365 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lin, Xiaofang
Lin, Minggang
Li, Tan
Lu, Hao
Qi, Huan
Chen, Ting
Wu, Lili
Zhang, Chuyang
Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title_full Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title_fullStr Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title_full_unstemmed Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title_short Preparation of Self-Curling Melt-Blown Fibers with Crimped Masterbatch (CM) and Its Application for Low-Pressure Air Filtration
title_sort preparation of self-curling melt-blown fibers with crimped masterbatch (cm) and its application for low-pressure air filtration
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459721/
https://www.ncbi.nlm.nih.gov/pubmed/37631422
http://dx.doi.org/10.3390/polym15163365
work_keys_str_mv AT linxiaofang preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT linminggang preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT litan preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT luhao preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT qihuan preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT chenting preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT wulili preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration
AT zhangchuyang preparationofselfcurlingmeltblownfiberswithcrimpedmasterbatchcmanditsapplicationforlowpressureairfiltration