Cargando…
A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase
Hypochlorous acid (HOCl) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. In this report, imaging of HOCl was realized with a thiomorpholine-based probe as derivative of nitrob...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459737/ https://www.ncbi.nlm.nih.gov/pubmed/37630307 http://dx.doi.org/10.3390/molecules28166055 |
_version_ | 1785097483764891648 |
---|---|
author | Świerczyńska, Małgorzata Słowiński, Daniel Michalski, Radosław Romański, Jarosław Podsiadły, Radosław |
author_facet | Świerczyńska, Małgorzata Słowiński, Daniel Michalski, Radosław Romański, Jarosław Podsiadły, Radosław |
author_sort | Świerczyńska, Małgorzata |
collection | PubMed |
description | Hypochlorous acid (HOCl) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. In this report, imaging of HOCl was realized with a thiomorpholine-based probe as derivative of nitrobenzothiadiazole (NBD-S-TM). The fluorescence is based on photoinduced electron transfer by using nitrobenzothiadiazole core as a donor and thiomorpholine substituent as an acceptor. NBD-S-TM showed high sensitivity and a fast response to HOCl k = (2.6 ± 0.2) × 10(7) M(−1)s(−1) with a 1:1 stoichiometry. The detection limit for HOCl was determined to be 60 nM. Furthermore, the desirable features of NBD-S-TM for the detection of HOCl in aqueous solutions, such as its reliability at physiological pH, rapid fluorescence response, and biocompatibility, enabled its application in the detection of HOCl in myeloperoxidase enzymatic system. Moreover, NBD-S-TM exhibited excellent selectivity and sensitivity for HOCl over other biologically relevant species, such as hydrogen peroxide and peroxynitrite. The fluorescent S-oxidized product (NBD-S-TSO) is only formed in the presence of HOCl. Probing with NBD-S-TM may be helpful to further the development of high throughput screening assays to monitor the activity of myeloperoxidase. |
format | Online Article Text |
id | pubmed-10459737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104597372023-08-27 A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase Świerczyńska, Małgorzata Słowiński, Daniel Michalski, Radosław Romański, Jarosław Podsiadły, Radosław Molecules Article Hypochlorous acid (HOCl) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. In this report, imaging of HOCl was realized with a thiomorpholine-based probe as derivative of nitrobenzothiadiazole (NBD-S-TM). The fluorescence is based on photoinduced electron transfer by using nitrobenzothiadiazole core as a donor and thiomorpholine substituent as an acceptor. NBD-S-TM showed high sensitivity and a fast response to HOCl k = (2.6 ± 0.2) × 10(7) M(−1)s(−1) with a 1:1 stoichiometry. The detection limit for HOCl was determined to be 60 nM. Furthermore, the desirable features of NBD-S-TM for the detection of HOCl in aqueous solutions, such as its reliability at physiological pH, rapid fluorescence response, and biocompatibility, enabled its application in the detection of HOCl in myeloperoxidase enzymatic system. Moreover, NBD-S-TM exhibited excellent selectivity and sensitivity for HOCl over other biologically relevant species, such as hydrogen peroxide and peroxynitrite. The fluorescent S-oxidized product (NBD-S-TSO) is only formed in the presence of HOCl. Probing with NBD-S-TM may be helpful to further the development of high throughput screening assays to monitor the activity of myeloperoxidase. MDPI 2023-08-14 /pmc/articles/PMC10459737/ /pubmed/37630307 http://dx.doi.org/10.3390/molecules28166055 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Świerczyńska, Małgorzata Słowiński, Daniel Michalski, Radosław Romański, Jarosław Podsiadły, Radosław A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title | A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title_full | A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title_fullStr | A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title_full_unstemmed | A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title_short | A New and Fast-Response Fluorescent Probe for Monitoring Hypochlorous Acid Derived from Myeloperoxidase |
title_sort | new and fast-response fluorescent probe for monitoring hypochlorous acid derived from myeloperoxidase |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459737/ https://www.ncbi.nlm.nih.gov/pubmed/37630307 http://dx.doi.org/10.3390/molecules28166055 |
work_keys_str_mv | AT swierczynskamałgorzata anewandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT słowinskidaniel anewandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT michalskiradosław anewandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT romanskijarosław anewandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT podsiadłyradosław anewandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT swierczynskamałgorzata newandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT słowinskidaniel newandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT michalskiradosław newandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT romanskijarosław newandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase AT podsiadłyradosław newandfastresponsefluorescentprobeformonitoringhypochlorousacidderivedfrommyeloperoxidase |