Cargando…
Molecular Dynamics Simulations of Deformable Viral Capsomers
Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459744/ https://www.ncbi.nlm.nih.gov/pubmed/37632014 http://dx.doi.org/10.3390/v15081672 |
_version_ | 1785097485479313408 |
---|---|
author | Nilsson, Lauren B. Sun, Fanbo Kadupitiya, J. C. S. Jadhao, Vikram |
author_facet | Nilsson, Lauren B. Sun, Fanbo Kadupitiya, J. C. S. Jadhao, Vikram |
author_sort | Nilsson, Lauren B. |
collection | PubMed |
description | Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general [Formula: see text] icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer–capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer–capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures. |
format | Online Article Text |
id | pubmed-10459744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104597442023-08-27 Molecular Dynamics Simulations of Deformable Viral Capsomers Nilsson, Lauren B. Sun, Fanbo Kadupitiya, J. C. S. Jadhao, Vikram Viruses Article Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general [Formula: see text] icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer–capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer–capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures. MDPI 2023-07-31 /pmc/articles/PMC10459744/ /pubmed/37632014 http://dx.doi.org/10.3390/v15081672 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nilsson, Lauren B. Sun, Fanbo Kadupitiya, J. C. S. Jadhao, Vikram Molecular Dynamics Simulations of Deformable Viral Capsomers |
title | Molecular Dynamics Simulations of Deformable Viral Capsomers |
title_full | Molecular Dynamics Simulations of Deformable Viral Capsomers |
title_fullStr | Molecular Dynamics Simulations of Deformable Viral Capsomers |
title_full_unstemmed | Molecular Dynamics Simulations of Deformable Viral Capsomers |
title_short | Molecular Dynamics Simulations of Deformable Viral Capsomers |
title_sort | molecular dynamics simulations of deformable viral capsomers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459744/ https://www.ncbi.nlm.nih.gov/pubmed/37632014 http://dx.doi.org/10.3390/v15081672 |
work_keys_str_mv | AT nilssonlaurenb moleculardynamicssimulationsofdeformableviralcapsomers AT sunfanbo moleculardynamicssimulationsofdeformableviralcapsomers AT kadupitiyajcs moleculardynamicssimulationsofdeformableviralcapsomers AT jadhaovikram moleculardynamicssimulationsofdeformableviralcapsomers |