Cargando…
Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study
The wavelet spectral characteristics of three respiratory muscle signals (scalenus (SC), parasternal intercostal (IC), and rectus abdominis (RA)) and one locomotor muscle (brachioradialis (BR)) were analyzed in the time–frequency (T-F) domain during voluntary breath-holding (BH), with a focus on the...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459781/ https://www.ncbi.nlm.nih.gov/pubmed/37631736 http://dx.doi.org/10.3390/s23167200 |
_version_ | 1785097494181445632 |
---|---|
author | Mišić, Nataša Ž. Ostojić, Mirko Cvetković, Saša Miodragović, Petar Aničić, Zdravko Kovačić Popović, Anita Stefanović, Đorđe |
author_facet | Mišić, Nataša Ž. Ostojić, Mirko Cvetković, Saša Miodragović, Petar Aničić, Zdravko Kovačić Popović, Anita Stefanović, Đorđe |
author_sort | Mišić, Nataša Ž. |
collection | PubMed |
description | The wavelet spectral characteristics of three respiratory muscle signals (scalenus (SC), parasternal intercostal (IC), and rectus abdominis (RA)) and one locomotor muscle (brachioradialis (BR)) were analyzed in the time–frequency (T-F) domain during voluntary breath-holding (BH), with a focus on the physiological breakpoint that is commonly considered the first involuntary breathing movement (IBM) that signals the end of the easy-going phase of BH. The study was performed for an end-expiratory BH physiological breaking point maneuver on twelve healthy, physically active, naive breath-holders/apneists (six professional athletes; six recreational athletes, and two individuals in the post-COVID-19 period) using surface electromyography (sEMG). We observed individual effects that were dependent on muscle oxygenation and each person’s fitness, which were consistent with the mechanism of motor unit (MU) recruitment and the transition of slow-twitch oxidative (type 1) to fast-twitch glycolytic (type 2) muscle fibers. Professional athletes had longer BH durations (BHDs) and strong hypercapnic responses regarding the expiratory RA muscle, which is activated abruptly at higher BHDs in a person-specific range below 250 Hz and is dependent on the BHD. This is in contrast with recreational athletes, who had strong hypoxic responses regarding inspiratory IC muscle, which is activated faster and gradually in the frequency range of 250–450 Hz (independent of the person and BHD). This pilot study preliminarily indicates that it is possible to noninvasively assess the physiological characteristics of skeletal muscles, especially oxygenation, and improve physical fitness tests by determining the T-F features of elevated myoelectric IC and RA activity during BH. |
format | Online Article Text |
id | pubmed-10459781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104597812023-08-27 Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study Mišić, Nataša Ž. Ostojić, Mirko Cvetković, Saša Miodragović, Petar Aničić, Zdravko Kovačić Popović, Anita Stefanović, Đorđe Sensors (Basel) Article The wavelet spectral characteristics of three respiratory muscle signals (scalenus (SC), parasternal intercostal (IC), and rectus abdominis (RA)) and one locomotor muscle (brachioradialis (BR)) were analyzed in the time–frequency (T-F) domain during voluntary breath-holding (BH), with a focus on the physiological breakpoint that is commonly considered the first involuntary breathing movement (IBM) that signals the end of the easy-going phase of BH. The study was performed for an end-expiratory BH physiological breaking point maneuver on twelve healthy, physically active, naive breath-holders/apneists (six professional athletes; six recreational athletes, and two individuals in the post-COVID-19 period) using surface electromyography (sEMG). We observed individual effects that were dependent on muscle oxygenation and each person’s fitness, which were consistent with the mechanism of motor unit (MU) recruitment and the transition of slow-twitch oxidative (type 1) to fast-twitch glycolytic (type 2) muscle fibers. Professional athletes had longer BH durations (BHDs) and strong hypercapnic responses regarding the expiratory RA muscle, which is activated abruptly at higher BHDs in a person-specific range below 250 Hz and is dependent on the BHD. This is in contrast with recreational athletes, who had strong hypoxic responses regarding inspiratory IC muscle, which is activated faster and gradually in the frequency range of 250–450 Hz (independent of the person and BHD). This pilot study preliminarily indicates that it is possible to noninvasively assess the physiological characteristics of skeletal muscles, especially oxygenation, and improve physical fitness tests by determining the T-F features of elevated myoelectric IC and RA activity during BH. MDPI 2023-08-16 /pmc/articles/PMC10459781/ /pubmed/37631736 http://dx.doi.org/10.3390/s23167200 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Mišić, Nataša Ž. Ostojić, Mirko Cvetković, Saša Miodragović, Petar Aničić, Zdravko Kovačić Popović, Anita Stefanović, Đorđe Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title | Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title_full | Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title_fullStr | Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title_full_unstemmed | Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title_short | Wavelet Analysis of Respiratory Muscle sEMG Signals during the Physiological Breakpoint of Static Dry End-Expiratory Breath-Holding in Naive Apneists: A Pilot Study |
title_sort | wavelet analysis of respiratory muscle semg signals during the physiological breakpoint of static dry end-expiratory breath-holding in naive apneists: a pilot study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459781/ https://www.ncbi.nlm.nih.gov/pubmed/37631736 http://dx.doi.org/10.3390/s23167200 |
work_keys_str_mv | AT misicnatasaz waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT ostojicmirko waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT cvetkovicsasa waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT miodragovicpetar waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT aniciczdravko waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT kovacicpopovicanita waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy AT stefanovicđorđe waveletanalysisofrespiratorymusclesemgsignalsduringthephysiologicalbreakpointofstaticdryendexpiratorybreathholdinginnaiveapneistsapilotstudy |