Cargando…
Evaluation of the Use of the 12 Bands vs. NDVI from Sentinel-2 Images for Crop Identification
Today, machine learning applied to remote sensing data is used for crop detection. This makes it possible to not only monitor crops but also to detect pests, a lack of irrigation, or other problems. For systems that require high accuracy in crop identification, a large amount of data is required to...
Autores principales: | Lozano-Tello, Adolfo, Siesto, Guillermo, Fernández-Sellers, Marcos, Caballero-Mancera, Andres |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459796/ https://www.ncbi.nlm.nih.gov/pubmed/37631668 http://dx.doi.org/10.3390/s23167132 |
Ejemplares similares
-
Research on Rice Fields Extraction by NDVI Difference Method Based on Sentinel Data
por: Tian, Jinglian, et al.
Publicado: (2023) -
Understanding the spatio-temporal behaviour of the sunflower crop for subfield areas delineation using Sentinel‐2 NDVI time-series images in an organic farming system
por: Marino, Stefano
Publicado: (2023) -
Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion
por: Wu, Mingquan, et al.
Publicado: (2018) -
Width identification of transition zone between desert and oasis based on NDVI and TCI
por: JI, Shuxin, et al.
Publicado: (2020) -
Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors
por: Lange, Maximilian, et al.
Publicado: (2017)