Cargando…
Automatic Modulation Classification Based on CNN-Transformer Graph Neural Network
In recent years, neural network algorithms have demonstrated tremendous potential for modulation classification. Deep learning methods typically take raw signals or convert signals into time–frequency images as inputs to convolutional neural networks (CNNs) or recurrent neural networks (RNNs). Howev...
Autores principales: | Wang, Dong, Lin, Meiyan, Zhang, Xiaoxu, Huang, Yonghui, Zhu, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459892/ https://www.ncbi.nlm.nih.gov/pubmed/37631817 http://dx.doi.org/10.3390/s23167281 |
Ejemplares similares
-
Plant-CNN-ViT: Plant Classification with Ensemble of Convolutional Neural Networks and Vision Transformer
por: Lee, Chin Poo, et al.
Publicado: (2023) -
Automatic cardiac arrhythmias classification using CNN and attention‐based RNN network
por: Sun, Jie
Publicado: (2023) -
Automatic Stones Classification through a CNN-Based Approach
por: Tropea, Mauro, et al.
Publicado: (2022) -
Joint Classification and Prediction CNN Framework for Automatic Sleep Stage Classification
Publicado: (2018) -
A CNN-transformer fusion network for COVID-19 CXR image classification
por: Cao, Kai, et al.
Publicado: (2022)