Cargando…
Preparation and Characterization of Dopamine-Modified Carbon Fiber Paper Composites for Gas Diffusion Layers
Carbon fibers (CFs) cannot be directly used for the preparation of CF paper because of their chemically inert nature. Herein, the surface of CFs was modified using the spontaneous oxidative self-polymerization of dopamine. By taking full advantage of the spontaneous oxidation and self-polymerization...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10459963/ https://www.ncbi.nlm.nih.gov/pubmed/37631485 http://dx.doi.org/10.3390/polym15163428 |
Sumario: | Carbon fibers (CFs) cannot be directly used for the preparation of CF paper because of their chemically inert nature. Herein, the surface of CFs was modified using the spontaneous oxidative self-polymerization of dopamine. By taking full advantage of the spontaneous oxidation and self-polymerization properties of PD to maintain the maximum strength of CFs, a polydopamine-modified CF paper (PDA-CFP) with excellent performance was prepared using PD-modified CFs (PDA-CFs). This increased the proportion of hydrophilic functional groups on the surface of carbon fibers, increased the O/C ratio on the CF surface by 6 times, and improved the bond strength between the modified CF and the adhesive by making full use of the interaction force between polydopamine and PVA fibers. In this way, the primary properties of the CF paper were improved. Overall, the results showed that the dispersion of CF was considerably improved with dopamine modification. In addition, the primary physical properties of PDA-CFP were better than those of virgin CF paper (CFP-0). PDA-CFP exhibited a maximum tensile strength of 2.04 kN·m(−1), a minimum resistivity of 0.06055 Ω·cm(−1), and a minimum porosity of 72.4%. The tightness was increased by up to 12.1%. |
---|