Cargando…
Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis
Diabetes mellitus is a serious metabolic disorder characterized by abnormal blood glucose levels in the body. The development of therapeutic strategies for restoring and maintaining blood glucose homeostasis is still in progress. Synthetic alpha-amylase and alpha-glucosidase inhibitors can improve b...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460020/ https://www.ncbi.nlm.nih.gov/pubmed/37630730 http://dx.doi.org/10.3390/nu15163539 |
_version_ | 1785097551492415488 |
---|---|
author | Kęska, Paulina Stadnik, Joanna Łupawka, Aleksandra Michalska, Agata |
author_facet | Kęska, Paulina Stadnik, Joanna Łupawka, Aleksandra Michalska, Agata |
author_sort | Kęska, Paulina |
collection | PubMed |
description | Diabetes mellitus is a serious metabolic disorder characterized by abnormal blood glucose levels in the body. The development of therapeutic strategies for restoring and maintaining blood glucose homeostasis is still in progress. Synthetic alpha-amylase and alpha-glucosidase inhibitors can improve blood glucose control in diabetic patients by effectively reducing the risk of postprandial hyperglycemia. Peptides of natural origin are promising compounds that can serve as alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Potential alpha-glucosidase-inhibiting peptides obtained from aqueous and saline extracts from dry-cured pork loins inoculated with probiotic LAB were evaluated using in vitro and in silico methods. To identify the peptide sequences, liquid chromatography-mass spectrometry was used. For this purpose, in silico calculation methods were used, and the occurrence of bioactive fragments in the protein followed the ADMET approach. The most promising sequences were molecularly docked to test their interaction with the human alpha-glycosidase molecule (PDB ID: 5NN8). The docking studies proved that oligopeptides VATPPPPPPPK, DIPPPPM, TPPPPPPG, and TPPPPPPPK obtained by hydrolysis of proteins from ripening dry-cured pork loins showed the potential to bind to the human alpha-glucosidase molecule and may act effectively as a potential antidiabetic agent. |
format | Online Article Text |
id | pubmed-10460020 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-104600202023-08-27 Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis Kęska, Paulina Stadnik, Joanna Łupawka, Aleksandra Michalska, Agata Nutrients Article Diabetes mellitus is a serious metabolic disorder characterized by abnormal blood glucose levels in the body. The development of therapeutic strategies for restoring and maintaining blood glucose homeostasis is still in progress. Synthetic alpha-amylase and alpha-glucosidase inhibitors can improve blood glucose control in diabetic patients by effectively reducing the risk of postprandial hyperglycemia. Peptides of natural origin are promising compounds that can serve as alpha-glucosidase inhibitors in the treatment of type 2 diabetes. Potential alpha-glucosidase-inhibiting peptides obtained from aqueous and saline extracts from dry-cured pork loins inoculated with probiotic LAB were evaluated using in vitro and in silico methods. To identify the peptide sequences, liquid chromatography-mass spectrometry was used. For this purpose, in silico calculation methods were used, and the occurrence of bioactive fragments in the protein followed the ADMET approach. The most promising sequences were molecularly docked to test their interaction with the human alpha-glycosidase molecule (PDB ID: 5NN8). The docking studies proved that oligopeptides VATPPPPPPPK, DIPPPPM, TPPPPPPG, and TPPPPPPPK obtained by hydrolysis of proteins from ripening dry-cured pork loins showed the potential to bind to the human alpha-glucosidase molecule and may act effectively as a potential antidiabetic agent. MDPI 2023-08-11 /pmc/articles/PMC10460020/ /pubmed/37630730 http://dx.doi.org/10.3390/nu15163539 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kęska, Paulina Stadnik, Joanna Łupawka, Aleksandra Michalska, Agata Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title | Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title_full | Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title_fullStr | Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title_full_unstemmed | Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title_short | Novel α-Glucosidase Inhibitory Peptides Identified In Silico from Dry-Cured Pork Loins with Probiotics through Peptidomic and Molecular Docking Analysis |
title_sort | novel α-glucosidase inhibitory peptides identified in silico from dry-cured pork loins with probiotics through peptidomic and molecular docking analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460020/ https://www.ncbi.nlm.nih.gov/pubmed/37630730 http://dx.doi.org/10.3390/nu15163539 |
work_keys_str_mv | AT keskapaulina novelaglucosidaseinhibitorypeptidesidentifiedinsilicofromdrycuredporkloinswithprobioticsthroughpeptidomicandmoleculardockinganalysis AT stadnikjoanna novelaglucosidaseinhibitorypeptidesidentifiedinsilicofromdrycuredporkloinswithprobioticsthroughpeptidomicandmoleculardockinganalysis AT łupawkaaleksandra novelaglucosidaseinhibitorypeptidesidentifiedinsilicofromdrycuredporkloinswithprobioticsthroughpeptidomicandmoleculardockinganalysis AT michalskaagata novelaglucosidaseinhibitorypeptidesidentifiedinsilicofromdrycuredporkloinswithprobioticsthroughpeptidomicandmoleculardockinganalysis |