Cargando…
Neuronal diversity can improve machine learning for physics and beyond
Diversity conveys advantages in nature, yet homogeneous neurons typically comprise the layers of artificial neural networks. Here we construct neural networks from neurons that learn their own activation functions, quickly diversify, and subsequently outperform their homogeneous counterparts on imag...
Autores principales: | Choudhary, Anshul, Radhakrishnan, Anil, Lindner, John F., Sinha, Sudeshna, Ditto, William L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460398/ https://www.ncbi.nlm.nih.gov/pubmed/37634029 http://dx.doi.org/10.1038/s41598-023-40766-6 |
Ejemplares similares
-
Balance of Interactions Determines Optimal Survival in Multi-Species Communities
por: Choudhary, Anshul, et al.
Publicado: (2015) -
Taming Explosive Growth through Dynamic Random Links
por: Choudhary, Anshul, et al.
Publicado: (2014) -
Chaotic attractor hopping yields logic operations
por: Murali, K., et al.
Publicado: (2018) -
Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond
por: Boccaletti, Stefano, et al.
Publicado: (2020) -
Why machine learning (ML) has failed physical activity research and how we can improve
por: Fuller, Daniel, et al.
Publicado: (2022)