Cargando…

Clustering of fluoride and phosphate ions in bioactive glass from computer simulation

In order to understand the nature of ionic clustering in bioactive glass compositions, computer simulation was used to model four different compositions of bioactive glass with various amounts of flouride and phosphate. Fluoride ions were chemically bonded only to sodium and calcium, creating region...

Descripción completa

Detalles Bibliográficos
Autor principal: Christie, Jamieson K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460646/
https://www.ncbi.nlm.nih.gov/pubmed/37634536
http://dx.doi.org/10.1098/rsta.2022.0345
Descripción
Sumario:In order to understand the nature of ionic clustering in bioactive glass compositions, computer simulation was used to model four different compositions of bioactive glass with various amounts of flouride and phosphate. Fluoride ions were chemically bonded only to sodium and calcium, creating regions rich in fluoride and modifiers, and fluoride clustering was seen to be present in all compositions. The majority of phosphate groups are present as orthophosphate and phosphate clustering is also seen, and shown to be stronger in compositions with a lower phosphate content. This article is part of the theme issue ‘Exploring the length scales, timescales and chemistry of challenging materials (Part 1)’.