Cargando…
A Comprehensive and Versatile Multimodal Deep‐Learning Approach for Predicting Diverse Properties of Advanced Materials
A multimodal deep‐learning (MDL) framework is presented for predicting physical properties of a ten‐dimensional acrylic polymer composite material by merging physical attributes and chemical data. The MDL model comprises four modules, including three generative deep‐learning models for material stru...
Autores principales: | Muroga, Shun, Miki, Yasuaki, Hata, Kenji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460884/ https://www.ncbi.nlm.nih.gov/pubmed/37357977 http://dx.doi.org/10.1002/advs.202302508 |
Ejemplares similares
-
Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods
por: Watanabe, Takayuki, et al.
Publicado: (2022) -
Novel Approaches to In-Situ ATR-FTIR Spectroscopy and Spectroscopic Imaging for Real-Time Simultaneous Monitoring Curing Reaction and Diffusion of the Curing Agent at Rubber Nanocomposite Surface
por: Muroga, Shun, et al.
Publicado: (2021) -
Advancing Versatile Ferroelectric Materials Toward Biomedical Applications
por: Wang, Wenjun, et al.
Publicado: (2020) -
A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets
por: Bayoudh, Khaled, et al.
Publicado: (2021) -
An accessible and versatile deep learning-based sleep stage classifier
por: Hanna, Jevri, et al.
Publicado: (2023)