Cargando…
Data on the coefficient of friction and its prediction by a machine learning model as a function of time for open-cell AlSi10Mg-Al(2)O(3) composites with different porosity tested by pin-on-disk method
This data article presents the experimental data of the wear behavior of four types of open-cell AlSi10Mg materials and open-cell AlSi10Mg-Al(2)O(3) composites with different pore sizes under dry sliding conditions tested by pin-on-disk method. The data include the coefficient of friction (COF) as a...
Autores principales: | Kolev, Mihail, Drenchev, Ludmil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460942/ https://www.ncbi.nlm.nih.gov/pubmed/37645448 http://dx.doi.org/10.1016/j.dib.2023.109489 |
Ejemplares similares
-
Data on mechanical properties of open-cell AlSi10Mg materials and open-cell AlSi10Mg-SiC composites with different pore sizes and strain rates
por: Kolev, Mihail, et al.
Publicado: (2023) -
Open-Cell AlSn6Cu-SiC Composites: Fabrication, Dry-Sliding Wear Behavior, and Machine Learning Methods for Wear Prediction
por: Kolev, Mihail, et al.
Publicado: (2023) -
Heat Treatment Influencing Porosity and Tensile Properties of Field Assisted Sintered AlSi7Mg0.6
por: Hirsch, Sarah Johanna, et al.
Publicado: (2022) -
Multipass Friction Stir Processing of Laser-Powder Bed Fusion AlSi10Mg: Microstructure and Mechanical Properties
por: Heidarzadeh, Akbar, et al.
Publicado: (2023) -
Optimization of Heat Treatment Parameters of AlSi7Mg Alloy
por: Pezda, Jacek
Publicado: (2022)