Cargando…
Deep learning for risk-based stratification of cognitively impaired individuals
Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508,...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460987/ https://www.ncbi.nlm.nih.gov/pubmed/37646016 http://dx.doi.org/10.1016/j.isci.2023.107522 |
_version_ | 1785097757665525760 |
---|---|
author | Romano, Michael F. Zhou, Xiao Balachandra, Akshara R. Jadick, Michalina F. Qiu, Shangran Nijhawan, Diya A. Joshi, Prajakta S. Mohammad, Shariq Lee, Peter H. Smith, Maximilian J. Paul, Aaron B. Mian, Asim Z. Small, Juan E. Chin, Sang P. Au, Rhoda Kolachalama, Vijaya B. |
author_facet | Romano, Michael F. Zhou, Xiao Balachandra, Akshara R. Jadick, Michalina F. Qiu, Shangran Nijhawan, Diya A. Joshi, Prajakta S. Mohammad, Shariq Lee, Peter H. Smith, Maximilian J. Paul, Aaron B. Mian, Asim Z. Small, Juan E. Chin, Sang P. Au, Rhoda Kolachalama, Vijaya B. |
author_sort | Romano, Michael F. |
collection | PubMed |
description | Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis. |
format | Online Article Text |
id | pubmed-10460987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-104609872023-08-29 Deep learning for risk-based stratification of cognitively impaired individuals Romano, Michael F. Zhou, Xiao Balachandra, Akshara R. Jadick, Michalina F. Qiu, Shangran Nijhawan, Diya A. Joshi, Prajakta S. Mohammad, Shariq Lee, Peter H. Smith, Maximilian J. Paul, Aaron B. Mian, Asim Z. Small, Juan E. Chin, Sang P. Au, Rhoda Kolachalama, Vijaya B. iScience Article Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis. Elsevier 2023-08-02 /pmc/articles/PMC10460987/ /pubmed/37646016 http://dx.doi.org/10.1016/j.isci.2023.107522 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Romano, Michael F. Zhou, Xiao Balachandra, Akshara R. Jadick, Michalina F. Qiu, Shangran Nijhawan, Diya A. Joshi, Prajakta S. Mohammad, Shariq Lee, Peter H. Smith, Maximilian J. Paul, Aaron B. Mian, Asim Z. Small, Juan E. Chin, Sang P. Au, Rhoda Kolachalama, Vijaya B. Deep learning for risk-based stratification of cognitively impaired individuals |
title | Deep learning for risk-based stratification of cognitively impaired individuals |
title_full | Deep learning for risk-based stratification of cognitively impaired individuals |
title_fullStr | Deep learning for risk-based stratification of cognitively impaired individuals |
title_full_unstemmed | Deep learning for risk-based stratification of cognitively impaired individuals |
title_short | Deep learning for risk-based stratification of cognitively impaired individuals |
title_sort | deep learning for risk-based stratification of cognitively impaired individuals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460987/ https://www.ncbi.nlm.nih.gov/pubmed/37646016 http://dx.doi.org/10.1016/j.isci.2023.107522 |
work_keys_str_mv | AT romanomichaelf deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT zhouxiao deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT balachandraaksharar deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT jadickmichalinaf deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT qiushangran deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT nijhawandiyaa deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT joshiprajaktas deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT mohammadshariq deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT leepeterh deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT smithmaximilianj deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT paulaaronb deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT mianasimz deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT smalljuane deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT chinsangp deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT aurhoda deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals AT kolachalamavijayab deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals |