Cargando…

Deep learning for risk-based stratification of cognitively impaired individuals

Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508,...

Descripción completa

Detalles Bibliográficos
Autores principales: Romano, Michael F., Zhou, Xiao, Balachandra, Akshara R., Jadick, Michalina F., Qiu, Shangran, Nijhawan, Diya A., Joshi, Prajakta S., Mohammad, Shariq, Lee, Peter H., Smith, Maximilian J., Paul, Aaron B., Mian, Asim Z., Small, Juan E., Chin, Sang P., Au, Rhoda, Kolachalama, Vijaya B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460987/
https://www.ncbi.nlm.nih.gov/pubmed/37646016
http://dx.doi.org/10.1016/j.isci.2023.107522
_version_ 1785097757665525760
author Romano, Michael F.
Zhou, Xiao
Balachandra, Akshara R.
Jadick, Michalina F.
Qiu, Shangran
Nijhawan, Diya A.
Joshi, Prajakta S.
Mohammad, Shariq
Lee, Peter H.
Smith, Maximilian J.
Paul, Aaron B.
Mian, Asim Z.
Small, Juan E.
Chin, Sang P.
Au, Rhoda
Kolachalama, Vijaya B.
author_facet Romano, Michael F.
Zhou, Xiao
Balachandra, Akshara R.
Jadick, Michalina F.
Qiu, Shangran
Nijhawan, Diya A.
Joshi, Prajakta S.
Mohammad, Shariq
Lee, Peter H.
Smith, Maximilian J.
Paul, Aaron B.
Mian, Asim Z.
Small, Juan E.
Chin, Sang P.
Au, Rhoda
Kolachalama, Vijaya B.
author_sort Romano, Michael F.
collection PubMed
description Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis.
format Online
Article
Text
id pubmed-10460987
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-104609872023-08-29 Deep learning for risk-based stratification of cognitively impaired individuals Romano, Michael F. Zhou, Xiao Balachandra, Akshara R. Jadick, Michalina F. Qiu, Shangran Nijhawan, Diya A. Joshi, Prajakta S. Mohammad, Shariq Lee, Peter H. Smith, Maximilian J. Paul, Aaron B. Mian, Asim Z. Small, Juan E. Chin, Sang P. Au, Rhoda Kolachalama, Vijaya B. iScience Article Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508, validation cohort), subdividing individuals with mild cognitive impairment (MCI) into risk groups based on cerebrospinal fluid amyloid-β levels and identifying differential gray matter patterns. We then created models that fused neural networks with survival analysis, trained using non-parcellated T1-weighted brain MRIs from ADNI data, to predict the trajectories of MCI to AD conversion within the NACC cohort (integrated Brier score: 0.192 [discovery], and 0.108 [validation]). Using modern interpretability techniques, we verified that regions important for model prediction are classically associated with AD. We confirmed AD diagnosis labels using postmortem data. We conclude that our framework provides a strategy for risk-based stratification of individuals with MCI and for identifying regions key for disease prognosis. Elsevier 2023-08-02 /pmc/articles/PMC10460987/ /pubmed/37646016 http://dx.doi.org/10.1016/j.isci.2023.107522 Text en © 2023 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Romano, Michael F.
Zhou, Xiao
Balachandra, Akshara R.
Jadick, Michalina F.
Qiu, Shangran
Nijhawan, Diya A.
Joshi, Prajakta S.
Mohammad, Shariq
Lee, Peter H.
Smith, Maximilian J.
Paul, Aaron B.
Mian, Asim Z.
Small, Juan E.
Chin, Sang P.
Au, Rhoda
Kolachalama, Vijaya B.
Deep learning for risk-based stratification of cognitively impaired individuals
title Deep learning for risk-based stratification of cognitively impaired individuals
title_full Deep learning for risk-based stratification of cognitively impaired individuals
title_fullStr Deep learning for risk-based stratification of cognitively impaired individuals
title_full_unstemmed Deep learning for risk-based stratification of cognitively impaired individuals
title_short Deep learning for risk-based stratification of cognitively impaired individuals
title_sort deep learning for risk-based stratification of cognitively impaired individuals
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460987/
https://www.ncbi.nlm.nih.gov/pubmed/37646016
http://dx.doi.org/10.1016/j.isci.2023.107522
work_keys_str_mv AT romanomichaelf deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT zhouxiao deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT balachandraaksharar deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT jadickmichalinaf deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT qiushangran deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT nijhawandiyaa deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT joshiprajaktas deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT mohammadshariq deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT leepeterh deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT smithmaximilianj deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT paulaaronb deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT mianasimz deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT smalljuane deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT chinsangp deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT aurhoda deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals
AT kolachalamavijayab deeplearningforriskbasedstratificationofcognitivelyimpairedindividuals