Cargando…
Deep learning for risk-based stratification of cognitively impaired individuals
Quantifying the risk of progression to Alzheimer’s disease (AD) could help identify persons who could benefit from early interventions. We used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n = 544, discovery cohort) and the National Alzheimer’s Coordinating Center (NACC, n = 508,...
Autores principales: | Romano, Michael F., Zhou, Xiao, Balachandra, Akshara R., Jadick, Michalina F., Qiu, Shangran, Nijhawan, Diya A., Joshi, Prajakta S., Mohammad, Shariq, Lee, Peter H., Smith, Maximilian J., Paul, Aaron B., Mian, Asim Z., Small, Juan E., Chin, Sang P., Au, Rhoda, Kolachalama, Vijaya B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460987/ https://www.ncbi.nlm.nih.gov/pubmed/37646016 http://dx.doi.org/10.1016/j.isci.2023.107522 |
Ejemplares similares
-
Enhancing magnetic resonance imaging-driven Alzheimer’s disease classification performance using generative adversarial learning
por: Zhou, Xiao, et al.
Publicado: (2021) -
Fusion of deep learning models of MRI scans, Mini–Mental State Examination, and logical memory test enhances diagnosis of mild cognitive impairment
por: Qiu, Shangran, et al.
Publicado: (2018) -
Redefining and Validating Digital Biomarkers as Fluid, Dynamic Multi-Dimensional Digital Signal Patterns
por: Au, Rhoda, et al.
Publicado: (2022) -
Temporal association of neuropsychological test performance using unsupervised learning reveals a distinct signature of Alzheimer's disease status
por: Joshi, Prajakta S., et al.
Publicado: (2019) -
Detection of dementia on voice recordings using deep learning: a Framingham Heart Study
por: Xue, Chonghua, et al.
Publicado: (2021)